1,125 research outputs found
A review paper on R&D efforts in assessing the traffic noise on highways
In rapidly urbanizing country like India, the transportation sector is growing in a fast pace and the number of vehicles on Indian roads is increasing at a rate of more than 7% per annum. This has led to over crowded roads and pollution. Transportation sector is one of the major contributors to noise in urban area, which contributes 55% of total noise on highway. In view of this, it is essential to study highway noise with respect to various causative factors. Hence, various noise prediction models have been developed, throughout the world to assess its impact on to the society and the human beings. These traffic noise prediction models differ in some respects, but the overall methodology is similar. All the noise prediction models consists of evaluating basic noise levels and making series of adjustments to take into account geometric, traffic flow, barrier data etc. In this paper, noise prediction models of U.S.A. and U.K. (FHWA and CORTON) along with the research efforts on noise in Indian context has been studied and discussed
Nematic twist-bend phase with nanoscale modulation of molecular orientation
A state of matter in which molecules show a long-range orientational order and no positional order is called a nematic liquid crystal. The best known and most widely used (for example, in modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single axis, called the director. When the molecules are chiral, the director twists in space, drawing a right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a chiral nematic. Here using transmission electron and optical microscopy, we experimentally demonstrate a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic (helicoids with right-angle tilt)
Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals
The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large
Nematic Twist-Bend Phase with Nanoscale Modulation of Molecular Orientation
Peer reviewedPublisher PD
Electric field induced biaxiality and the electro-optic effect in a bent-core nematic liquid crystal
We report the observation of a biaxial nematic phase in a bent-core molecular system using polarizing microscopy, electro-optics, and dielectric spectroscopy, where we find that the biaxiality exists on a microscopic scale. An application of electric field induces a macroscopic biaxiality and in consequence gives rise to electro-optic switching. This electro-optic effect shows significant potential in applications for displays due to its fast high-contrast response. The observed electro-optic switching is explained in terms of the interaction of the ferroelectric clusters with the electric field
A Study of Antiferroelectric Liquid Crystals Using the Pyroelectric Technique
Antiferroelectric liquid crystals are studied using the pyroelecmc technique. The effects of temperature and applied voltage on the pyroelectric signal are examined. The pyroelecmc signal can detect phase changes that occur due to temperature and bias voltage. A high temperature femelecmc phase FiLC is found and the stability of this phase under different bias voltages is examine
Structure and Polymorphism of Biaxial Bent-Core Smectic Liquid Crystal
The mesomorphic properties of a homologous series of achiral bent-core compounds are studied by polarizing optical microscopy, electro-optics and polarization measurements. Induction of a new orthogonal smectic phases with the increase of alkyl side chain length was observed. One of the compounds exhibits a unique phase transition between four non-tilted smectic phases (SmAPA–SmAPAR-SmAPR-SmA). The uniaxial but antiferroelectric nature of SmAPAR phase was confirmed by POM, current response, the 2nd harmonic electro-optic response and polarization measurements. The structure of SmAPAR phase was studied theoretically by Next-Nearest-Neighbor model and was identified as SmAPα
Properties of Non-Tilted Bent-Core Orthogonal Smectic Liquid Crystal
We present the properties of different achiral orthogonal polar smectic phases observed in a homologous series of bent-core molecular compounds. The macroscopically uniaxial SmAPR phase transforms to biaxial state by the application of higher electric fields and biaxial SmAPA phase undergoes biaxial-uniaxial-biaxial texture transformation with increasing electric fields,i.e.,initial antiferroelectric structure transforms into ferroelectric state under higher electric fields and it shows three different optically distinguishable states. The SmAPAR phase shows an entirely different response compared to other polar smectic phases under study. The dielectric measurements in the SmAPAR phase is the evidence of antiferroelectric behavior of uniaxial state. The polarizing microscopy texture observation supports the corresponding biaxiality measurements
- …