17 research outputs found

    Momentum flux density, kinetic energy density and their fluctuations for one-dimensional confined gases of non-interacting fermions

    Full text link
    We present a Green's function method for the evaluation of the particle density profile and of the higher moments of the one-body density matrix in a mesoscopic system of N Fermi particles moving independently in a linear potential. The usefulness of the method is illustrated by applications to a Fermi gas confined in a harmonic potential well, for which we evaluate the momentum flux and kinetic energy densities as well as their quantal mean-square fluctuations. We also study some properties of the kinetic energy functional E_{kin}[n(x)] in the same system. Whereas a local approximation to the kinetic energy density yields a multi-valued function, an exact single-valued relationship between the density derivative of E_{kin}[n(x)] and the particle density n(x) is demonstrated and evaluated for various values of the number of particles in the system.Comment: 10 pages, 5 figure

    Some exact results for a trapped quantum gas at finite temperature

    Full text link
    We present closed analytical expressions for the particle and kinetic energy spatial densities at finite temperatures for a system of noninteracting fermions (bosons) trapped in a d-dimensional harmonic oscillator potential. For d=2 and 3, exact expressions for the N-particle densities are used to calculate perturbatively the temperature dependence of the splittings of the energy levels in a given shell due to a very weak interparticle interaction in a dilute Fermi gas. In two dimensions, we obtain analytically the surprising result that the |l|-degeneracy in a harmonic oscillator shell is not lifted in the lowest order even when the exact, rather than the Thomas-Fermi expression for the particle density is used. We also demonstrate rigorously (in two dimensions) the reduction of the exact zero-temperature fermionic expressions to the Thomas-Fermi form in the large-N limit.Comment: 14 pages, 4 figures include

    Treatment of backscattering in a gas of interacting fermions confined to a one-dimensional harmonic atom trap

    Full text link
    An asymptotically exact many body theory for spin polarized interacting fermions in a one-dimensional harmonic atom trap is developed using the bosonization method and including backward scattering. In contrast to the Luttinger model, backscattering in the trap generates one-particle potentials which must be diagonalized simultaneously with the two-body interactions. Inclusion of backscattering becomes necessary because backscattering is the dominant interaction process between confined identical one-dimensional fermions. The bosonization method is applied to the calculation of one-particle matrix elements at zero temperature. A detailed discussion of the validity of the results from bosonization is given, including a comparison with direct numerical diagonalization in fermionic Hilbert space. A model for the interaction coefficients is developed along the lines of the Luttinger model with only one coupling constant KK. With these results, particle densities, the Wigner function, and the central pair correlation function are calculated and displayed for large fermion numbers. It is shown how interactions modify these quantities. The anomalous dimension of the pair correlation function in the center of the trap is also discussed and found to be in accord with the Luttinger model.Comment: 19 pages, 5 figures, journal-ref adde
    corecore