9,164 research outputs found
Capacity per Unit Energy of Fading Channels with a Peak Constraint
A discrete-time single-user scalar channel with temporally correlated
Rayleigh fading is analyzed. There is no side information at the transmitter or
the receiver. A simple expression is given for the capacity per unit energy, in
the presence of a peak constraint. The simple formula of Verdu for capacity per
unit cost is adapted to a channel with memory, and is used in the proof. In
addition to bounding the capacity of a channel with correlated fading, the
result gives some insight into the relationship between the correlation in the
fading process and the channel capacity. The results are extended to a channel
with side information, showing that the capacity per unit energy is one nat per
Joule, independently of the peak power constraint.
A continuous-time version of the model is also considered. The capacity per
unit energy subject to a peak constraint (but no bandwidth constraint) is given
by an expression similar to that for discrete time, and is evaluated for
Gauss-Markov and Clarke fading channels.Comment: Journal version of paper presented in ISIT 2003 - now accepted for
publication in IEEE Transactions on Information Theor
Family Planning Market in India
This literature review captures existing knowledge across a range of products and players in India's family planning market. The product scope covers condoms, oral contraceptive pills, injectable contraceptives, intra-uterine devices, and male and female sterilization.The broad reach of this analysis brings diverse perspectives together to provide a complete picture of the current state of the market. The review can be particularly useful for field practitioners, donors, and other players looking to understand the current state of discovery in the India family planning market
A Distributed Epigenetic Shape Formation and Regeneration Algorithm for a Swarm of Robots
Living cells exhibit both growth and regeneration of body tissues. Epigenetic
Tracking (ET), models this growth and regenerative qualities of living cells
and has been used to generate complex 2D and 3D shapes. In this paper, we
present an ET based algorithm that aids a swarm of identically-programmed
robots to form arbitrary shapes and regenerate them when cut. The algorithm
works in a distributed manner using only local interactions and computations
without any central control and aids the robots to form the shape in a
triangular lattice structure. In case of damage or splitting of the shape, it
helps each set of the remaining robots to regenerate and position themselves to
build scaled down versions of the original shape. The paper presents the shapes
formed and regenerated by the algorithm using the Kilombo simulator.Comment: 8 pages, 9 figures, GECCO-18 conferenc
Activity Driven Weakly Supervised Object Detection
Weakly supervised object detection aims at reducing the amount of supervision
required to train detection models. Such models are traditionally learned from
images/videos labelled only with the object class and not the object bounding
box. In our work, we try to leverage not only the object class labels but also
the action labels associated with the data. We show that the action depicted in
the image/video can provide strong cues about the location of the associated
object. We learn a spatial prior for the object dependent on the action (e.g.
"ball" is closer to "leg of the person" in "kicking ball"), and incorporate
this prior to simultaneously train a joint object detection and action
classification model. We conducted experiments on both video datasets and image
datasets to evaluate the performance of our weakly supervised object detection
model. Our approach outperformed the current state-of-the-art (SOTA) method by
more than 6% in mAP on the Charades video dataset.Comment: CVPR'19 camera read
- …
