1,152 research outputs found
Calculation of supersonic viscous flow over delta wings with sharp subsonic leading edges
Two complementary procedures were developed to calculate the viscous supersonic flow over conical shapes at large angles of attack, with application to cones and delta wings. In the first approach the flow is assumed to be conical and the governing equations are solved at a given Reynolds number with a time-marching explicit finite-difference algorithm. In the second method the parabolized Navier-Stokes equations are solved with a space-marching implicit noniterative finite-difference algorithm. This latter approach is not restricted to conical shapes and provides a large improvement in computational efficiency over published methods. Results from the two procedures agree very well with each other and with available experimental data
Two-probe theory of scanning tunneling microscopy of single molecules: Zn(II)-etioporphyrin on alumina
We explore theoretically the scanning tunneling microscopy of single
molecules on substrates using a framework of two local probes. This framework
is appropriate for studying electron flow in tip/molecule/substrate systems
where a thin insulating layer between the molecule and a conducting substrate
transmits electrons non-uniformly and thus confines electron transmission
between the molecule and substrate laterally to a nanoscale region
significantly smaller in size than the molecule. The tip-molecule coupling and
molecule-substrate coupling are treated on the same footing, as local probes to
the molecule, with electron flow modelled using the Lippmann-Schwinger Green
function scattering technique. STM images are simulated for various positions
of the stationary (substrate) probe below a Zn(II)-etioporphyrin I molecule. We
find that these images have a strong dependence on the substrate probe
position, indicating that electron flow can depend strongly on both tip
position and the location of the dominant molecule-substrate coupling.
Differences in the STM images are explained in terms of the molecular orbitals
that mediate electron flow in each case. Recent experimental results, showing
STM topographs of Zn(II)-etioporphyrin I on alumina/NiAl(110) to be strongly
dependent on which individual molecule on the substrate is being probed, are
explained using this model. A further experimental test of the model is also
proposed.Comment: Physical Review B, in pres
- …