1,306 research outputs found
Nuclear multifragmentation time-scale and fluctuations of largest fragment size
Distributions of the largest fragment charge, Zmax, in multifragmentation
reactions around the Fermi energy can be decomposed into a sum of a Gaussian
and a Gumbel distribution, whereas at much higher or lower energies one or the
other distribution is asymptotically dominant. We demonstrate the same generic
behavior for the largest cluster size in critical aggregation models for small
systems, in or out of equilibrium, around the critical point. By analogy with
the time-dependent irreversible aggregation model, we infer that Zmax
distributions are characteristic of the multifragmentation time-scale, which is
largely determined by the onset of radial expansion in this energy range.Comment: Accepted for publication in Physical Review Letters on 8/4/201
Constrained caloric curves and phase transition for hot nuclei
Simulations based on experimental data obtained from multifragmenting
quasi-fused nuclei produced in central Xe + Sn collisions have
been used to deduce event by event freeze-out properties in the thermal
excitation energy range 4-12 AMeV [Nucl. Phys. A809 (2008) 111]. From these
properties and the temperatures deduced from proton transverse momentum
fluctuations, constrained caloric curves have been built. At constant average
volumes caloric curves exhibit a monotonic behaviour whereas for constrained
pressures a backbending is observed. Such results support the existence of a
first order phase transition for hot nuclei.Comment: 14 pages, 5 figures, accepted in Physics Letters
Isospin Diffusion in Ni-Induced Reactions at Intermediate Energies
Isospin diffusion is probed as a function of the dissipated energy by
studying two systems Ni+Ni and Ni+Au, over the
incident energy range 52-74\AM. Experimental data are compared with the results
of a microscopic transport model with two different parameterizations of the
symmetry energy term. A better overall agreement between data and simulations
is obtained when using a symmetry term with a potential part linearly
increasing with nuclear density. The isospin equilibration time at 52 \AM{} is
estimated to 13010 fm/
Coulomb chronometry to probe the decay mechanism of hot nuclei
In 129 Xe+ nat Sn central collisions from 8 to 25 MeV/A, the three-fragment
exit channel occurs with a significant cross section. We show that these
fragments arise from two successive binary splittings of a heavy composite
system. The sequence of fragment production is determined. Strong Coulomb
proximity effects are observed in the three-fragment final state. A comparison
with Coulomb trajec-tory calculations shows that the time scale between the
consecutive break-ups decreases with increasing bombarding energy, becoming
quasi-simultaneous above excitation energy E * = 4.00.5 MeV/A. This
transition from sequential to simultaneous break-up was interpreted as the
signature of the onset of multifragmentation for the three-fragment exit
channel in this system.Comment: 12 pages; 13 Figures; 4 Table; Accepted for publication in Physical
Review
The prominent role of the heaviest fragment in multifragmentation and phase transition for hot nuclei
The role played by the heaviest fragment in partitions of multifragmenting
hot nuclei is emphasized. Its size/charge distribution (mean value,
fluctuations and shape) gives information on properties of fragmenting nuclei
and on the associated phase transition.Comment: 11 pages, Proceedings of IWND09, August 23-25, Shanghai (China
Dynamical effects in multifragmentation at intermediate energies
The fragmentation of the quasi-projectile is studied with the INDRA
multidetector for different colliding systems and incident energies in the
Fermi energy range. Different experimental observations show that a large part
of the fragmentation is not compatible with the statistical fragmentation of a
fully equilibrated nucleus. The study of internal correlations is a powerful
tool, especially to evidence entrance channel effects. These effects have to be
included in the theoretical descriptions of nuclear multifragmentation.Comment: 13 pages, 26 figures, submitted to Physical Review
Liquid-gas phase transition in hot nuclei studied with INDRA
Thanks to the high detection quality of the INDRA array, signatures related
to the dynamics (spinodal decomposition) and thermodynamics (negative
microcanonical heat capacity) of a liquid-gas phase transition have been
simultaneously studied in multifragmentation events in the Fermi energy domain.
The correlation between both types of signals strongly supports the existence
of a first order phase transition for hot nuclei.Comment: 9 pages, 2 figures, Invited talk to Nucleus-nucleus 2003 Moscow June
200
Isospin transport in 84Kr + 112,124Sn collisions at Fermi energies
Isotopically resolved fragments with Z<=20 have been studied with high
resolution telescopes in a test run for the FAZIA collaboration. The fragments
were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich
(124Sn) and a n-poor (112Sn) target. The fragments, detected close to the
grazing angle, are mainly emitted from the phase-space region of the
projectile. The fragment isotopic content clearly depends on the n-richness of
the target and it is a direct evidence of isospin diffusion between projectile
and target. The observed enhanced neutron richness of light fragments emitted
from the phase-space region close to the center of mass of the system can be
interpreted as an effect of isospin drift in the diluted neck region.Comment: 8 pages, 7 figure
Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV
Using the quantum molecular dynamics approach, we analyze the results of the
recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and
150 AMeV. It turns out that in this energy region the transition toward a
participant-spectator scenario takes place. The large Au+Au system displays in
the simulations as in the experiment simultaneously dynamical and statistical
behavior which we analyze in detail: The composition of fragments close to
midrapidity follows statistical laws and the system shows bi-modality, i.e. a
sudden transition between different fragmentation pattern as a function of the
centrality as expected for a phase transition. The fragment spectra at small
and large rapidities, on the other hand, are determined by dynamics and the
system as a whole does not come to equilibrium, an observation which is
confirmed by FOPI experiments for the same system.Comment: published versio
- âŠ