1,306 research outputs found

    Nuclear multifragmentation time-scale and fluctuations of largest fragment size

    Get PDF
    Distributions of the largest fragment charge, Zmax, in multifragmentation reactions around the Fermi energy can be decomposed into a sum of a Gaussian and a Gumbel distribution, whereas at much higher or lower energies one or the other distribution is asymptotically dominant. We demonstrate the same generic behavior for the largest cluster size in critical aggregation models for small systems, in or out of equilibrium, around the critical point. By analogy with the time-dependent irreversible aggregation model, we infer that Zmax distributions are characteristic of the multifragmentation time-scale, which is largely determined by the onset of radial expansion in this energy range.Comment: Accepted for publication in Physical Review Letters on 8/4/201

    Constrained caloric curves and phase transition for hot nuclei

    Get PDF
    Simulations based on experimental data obtained from multifragmenting quasi-fused nuclei produced in central 129^{129}Xe + nat^{nat}Sn collisions have been used to deduce event by event freeze-out properties in the thermal excitation energy range 4-12 AMeV [Nucl. Phys. A809 (2008) 111]. From these properties and the temperatures deduced from proton transverse momentum fluctuations, constrained caloric curves have been built. At constant average volumes caloric curves exhibit a monotonic behaviour whereas for constrained pressures a backbending is observed. Such results support the existence of a first order phase transition for hot nuclei.Comment: 14 pages, 5 figures, accepted in Physics Letters

    Isospin Diffusion in 58^{58}Ni-Induced Reactions at Intermediate Energies

    Get PDF
    Isospin diffusion is probed as a function of the dissipated energy by studying two systems 58^{58}Ni+58^{58}Ni and 58^{58}Ni+197^{197}Au, over the incident energy range 52-74\AM. Experimental data are compared with the results of a microscopic transport model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 \AM{} is estimated to 130±\pm10 fm/cc

    Coulomb chronometry to probe the decay mechanism of hot nuclei

    Get PDF
    In 129 Xe+ nat Sn central collisions from 8 to 25 MeV/A, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajec-tory calculations shows that the time scale between the consecutive break-ups decreases with increasing bombarding energy, becoming quasi-simultaneous above excitation energy E * = 4.0±\pm0.5 MeV/A. This transition from sequential to simultaneous break-up was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.Comment: 12 pages; 13 Figures; 4 Table; Accepted for publication in Physical Review

    The prominent role of the heaviest fragment in multifragmentation and phase transition for hot nuclei

    Get PDF
    The role played by the heaviest fragment in partitions of multifragmenting hot nuclei is emphasized. Its size/charge distribution (mean value, fluctuations and shape) gives information on properties of fragmenting nuclei and on the associated phase transition.Comment: 11 pages, Proceedings of IWND09, August 23-25, Shanghai (China

    Dynamical effects in multifragmentation at intermediate energies

    Full text link
    The fragmentation of the quasi-projectile is studied with the INDRA multidetector for different colliding systems and incident energies in the Fermi energy range. Different experimental observations show that a large part of the fragmentation is not compatible with the statistical fragmentation of a fully equilibrated nucleus. The study of internal correlations is a powerful tool, especially to evidence entrance channel effects. These effects have to be included in the theoretical descriptions of nuclear multifragmentation.Comment: 13 pages, 26 figures, submitted to Physical Review

    Liquid-gas phase transition in hot nuclei studied with INDRA

    Full text link
    Thanks to the high detection quality of the INDRA array, signatures related to the dynamics (spinodal decomposition) and thermodynamics (negative microcanonical heat capacity) of a liquid-gas phase transition have been simultaneously studied in multifragmentation events in the Fermi energy domain. The correlation between both types of signals strongly supports the existence of a first order phase transition for hot nuclei.Comment: 9 pages, 2 figures, Invited talk to Nucleus-nucleus 2003 Moscow June 200

    Isospin transport in 84Kr + 112,124Sn collisions at Fermi energies

    Full text link
    Isotopically resolved fragments with Z<=20 have been studied with high resolution telescopes in a test run for the FAZIA collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich (124Sn) and a n-poor (112Sn) target. The fragments, detected close to the grazing angle, are mainly emitted from the phase-space region of the projectile. The fragment isotopic content clearly depends on the n-richness of the target and it is a direct evidence of isospin diffusion between projectile and target. The observed enhanced neutron richness of light fragments emitted from the phase-space region close to the center of mass of the system can be interpreted as an effect of isospin drift in the diluted neck region.Comment: 8 pages, 7 figure

    Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV

    Full text link
    Using the quantum molecular dynamics approach, we analyze the results of the recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and 150 AMeV. It turns out that in this energy region the transition toward a participant-spectator scenario takes place. The large Au+Au system displays in the simulations as in the experiment simultaneously dynamical and statistical behavior which we analyze in detail: The composition of fragments close to midrapidity follows statistical laws and the system shows bi-modality, i.e. a sudden transition between different fragmentation pattern as a function of the centrality as expected for a phase transition. The fragment spectra at small and large rapidities, on the other hand, are determined by dynamics and the system as a whole does not come to equilibrium, an observation which is confirmed by FOPI experiments for the same system.Comment: published versio
    • 

    corecore