7 research outputs found
Guidance algorithms for a free-flying space robot
Robotics is a promising technology for assembly, servicing, and maintenance of platforms in space. Several aspects of planning and guidance for telesupervised and fully autonomous robotic servicers are investigated. Guidance algorithms for proximity operation of a free flyer are described. Numeric trajectory optimization is combined with artificial intelligence based obstacle avoidance. An initial algorithm and the results of its simulating platform servicing scenario are discussed. A second algorithm experiment is then proposed
The Lincoln Near-Earth Asteroid
technology to detect, characterize, and catalog satellites for more than forty years. Recent advances in highly sensitive, large-format charge-coupled devices (CCDs) allow this technology to be applied to detecting and cataloging asteroids, including near-Earth objects (NEOs). When equipped with a new Lincoln Laboratory focal-plane camera and signal processing technology, the 1-m U.S. Air Force ground-based electro-optical deep-space surveillance (GEODSS) telescopes can conduct sensitive large-coverage searches for Earthcrossing and main-belt asteroids. Field measurements indicate that these enhanced telescopes can achieve a limiting magnitude of 22 over a 2-deg 2 field of view with less than 100 sec of integration. This sensitivity rivals that of much larger telescopes equipped with commercial cameras. Working two years under U.S. Air Force sponsorship, we have developed technology for asteroid search operations at the Lincoln Laboratory Experimental Test Site near Socorro, New Mexico. By using a new large-format 2560 × 1960-pixel frame-transfer CCD camera, we have discovered over 10,00