5 research outputs found
On generalized surrogate duality in mixed-integer nonlinear programming
The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global -optimality with spatial branch and bound is a tight, computationally
tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solvers
can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we
exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and
challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the
algorithmâs ability to generate strong dual bounds through extensive computational experiments
Quantitative stability of fully random mixed-integer two-stage stochastic programs
Mixed-integer two-stage stochastic programs with ïŹxed recourse matrix, random recourse costs, technology matrix, and right-hand sides areconsidered. Quantitative continuity properties of its optimal value and solution set are derived when the underlying probability distribution is perturbed with respect to an appropriate probability metric