4 research outputs found

    Applied Mineralogy of Pyrometallurgical Products

    No full text
    The application of mineralogical techniques to the study of pyrometallurgical products can provide important information that allows a better understanding of the reactions that occur within the furnace. The reactions can be deduced from the reflected light determinations of variations in mineralogical assemblages between, samples collected from different portions of the furnace and by the direct observations under reflected light of mineral textures in which one mineral is partly reacted to another. Compositional variations within mineral solid solutions can be quantitatively determined by electron microprobe analyses. Phase abundances within each sample can be quantitatively determined by automatic image analysis. By these techniques, small but important variations in mineral assemblages, phase abundances, phase compositions, and mineral textures can be distinguished between pyrometallurgical samples and related to differences in conditions of production

    Sulfur Isotope Evidence for Penetration of MVT Fluids into Igneous Basement Rocks, Southeast Missouri, USA

    No full text
    Previous studies of galena and sphalerite from Paleozoic MVT deposits in the Viburnum Trend, southeast Missouri documented large variations in δ34S values throughout the ore-forming event. The present study of Cu-Fe-sulfides reveals a similar δ34S variation that reflects two end-member sulfur reservoirs whose relative importance varied both temporally and spatially. More 34S-enriched sulfides (δ34S approaching 25‰) indicate introduction of sulfur from basinal sedimentary sources, whereas more 32S-enriched sulfides (δ34S \u3c 5‰) may reflect fluids moving through underlying granitic basement. Two areas containing Precambrian, igneous-hosted FeCu mineralization in southeast Missouri (West and Central Domes of Boss-Bixby) were investigated to elucidate their relationship to Cu-rich MVT orebodies hosted nearby within the overlying Cambrian Bonneterre Dolomite. Mineralization at Boss-Bixby is composed of an early phase of iron oxide deposition followed by Cu-Fe-sulfides. The Central Dome is faulted and its mineralization is more fracture-controlled than the typically podiform ores of the West Dome. The δ34S values of West Dome sulfides are 0.9 to 6.5‰ and pyrite-chalcopyrite indicate a temperature of 525° ± 50°C. These data indicate an igneous source of sulfur during Precambrian ore deposition. In contrast, δ34S values of Central Dome sulfides are 9.4 to 20.0‰ and pyrite-chalcopyrite indicate temperatures of 275° ± 50°C. Similar δ34S values are obtained for chalcopyrite from the overlying MVT deposits. We speculate that deeply circulating, basin-derived MVT fluids mobilized sulfur and copper from the underlying igneous basement and redeposited them in overlying Curich MVT orebodies, as well as overprinting earlier Precambrian sulfides of the Central Dome with a later, Paleozoic MVT sulfur isotope signature. Many models for MVT fluid circulation in the Midcontinent region of North America assume that igneous basement rocks are an impermeable boundary, but in southeast Missouri, evidence exists for structurally controlled MVT fluid movement \u3e 600 m vertically through underlying Precambrian igneous rocks. Such basement involvement has been suggested for other carbonate-hosted base-metal districts (e.g. Irish base metal deposits) and should be considered an integral part of the ore-forming process in southeast Missouri

    Process Mineralogy of Suspended Particles from a Simulated Commercial Flash Smelter

    No full text
    Polished sections of pyrometallurgical intermediate products from a simulated commercial flash furnace were examined by reflected light microscopy, scanning electron microscopy-energy dispersive spectrometry and electron backscatter analysis, and microprobe analysis for phase and textural relationships. The smelter feed is a copper concentrate from a porphyry copper deposit. The concentrate consists primarily of chalcopyrite, bornite, and pyrite with smaller amounts of covellite, chalcocite, molybdenite, magnetite, galena, and sphalerite. The flash furnace reactions for pyrite and chalcopyrite can be observed by reflected light microscopy. Reacted angular particles of pyrite exhibit successive rims of fibrous pyrrhotite and hematite or magnetite. Reacted angular chalcopyrite particles show successive rims of bornite, digenite, and chalcocite. Spherical particles, formed by the complete melting of former pyrite and chalcopyrite particles, consist of variable amounts of granular pyrrhotite with magnetite rims and minor hematite. Spherical particles, formed by the complete melting of former chalcopyrite particles, exhibit exsolution intergrowths with varying proportions of intermediate solid solution, bornite, digenite, and chalcocite, and have rims of hematite, magnetite, and copper-iron spinel. Electron microprobe analyses show that the iron oxides contain significant copper and minor zinc in their structures. Sphalerite and molybdenite do not show evident mineralogical reactions
    corecore