123 research outputs found

    Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks

    No full text
    BACKGROUND: Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti. METHODS: Using a dynamic life table simulation model (the Container inhabiting mosquito simulation CIMSiM) and statistically downscaled daily values for future climate, we assessed climate change induced changes to mosquito bionomics. Simulations of Ae. aegypti populations for current (1991-2011) and future climate (2046-2065) were conducted for the city of Cairns, Queensland, the population centre with most dengue virus transmission in Australia. Female mosquito abundance, wet weight, and the extrinsic incubation period for dengue virus in these mosquitoes were estimated for current and future climate (MPI ECHAM 5 model, B1 and A2 emission scenarios). RESULTS: Overall mosquito abundance is predicted to change, but results were equivocal for different climate change scenarios. Aedes aegypti abundance is predicted to increase under the B1, but decrease under the A2 scenario. Mosquitoes are predicted to have a smaller body mass in a future climate. Shorter extrinsic incubation periods are projected. CONCLUSIONS: It is therefore unclear whether dengue risk would increase or decrease in tropical Australia with climate change. Our findings challenge the prevailing view that a future, warmer climate will lead to larger mosquito populations and a definite increase in dengue transmission. Whilst general predictions can be made about future mosquito borne disease incidence, cautious interpretation is necessary due to interaction between local environment, human behaviour and built environment, dengue virus, and vectors.This project was funded by the Commonwealth Department for Climate Change, via the NH&MRC (project 1003371)

    Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks

    Get PDF
    Background: Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti. Methods: Using a dynamic life table simulation model (the Container inhabiting mosquito simulation CIMSiM) and statistically downscaled daily values for future climate, we assessed climate change induced changes to mosquito bionomics. Simulations of Ae. aegypti populations for current (1991-2011) and future climate (2046-2065) were conducted for the city of Cairns, Queensland, the population centre with most dengue virus transmission in Australia. Female mosquito abundance, wet weight, and the extrinsic incubation period for dengue virus in these mosquitoes were estimated for current and future climate (MPI ECHAM 5 model, B1 and A2 emission scenarios). Results: Overall mosquito abundance is predicted to change, but results were equivocal for different climate change scenarios. Aedes aegypti abundance is predicted to increase under the B1, but decrease under the A2 scenario. Mosquitoes are predicted to have a smaller body mass in a future climate. Shorter extrinsic incubation periods are projected. Conclusions: It is therefore unclear whether dengue risk would increase or decrease in tropical Australia with climate change. Our findings challenge the prevailing view that a future, warmer climate will lead to larger mosquito populations and a definite increase in dengue transmission. Whilst general predictions can be made about future mosquito borne disease incidence, cautious interpretation is necessary due to interaction between local environment, human behaviour and built environment, dengue virus, and vectors

    Epidemiology of dengue in a high-income country: a case study in Queensland, Australia

    Get PDF
    Background: Australia is one of the few high-income countries where dengue transmission regularly occurs. Dengue is a major health threat in North Queensland (NQ), where the vector Aedes aegypti is present. Whether NQ should be considered as a dengue endemic or epidemic region is an ongoing debate. To help address this issue, we analysed the characteristics of locally-acquired (LA) and imported dengue cases in NQ through time and space. We describe the epidemiology of dengue in NQ from 1995 to 2011, to identify areas to target interventions. We also investigated the timeliness of notification and identified high-risk areas. Methods: Data sets of notified cases and viraemic arrivals from overseas were analysed. We developed a time series based on the LA cases and performed an analysis to capture the relationship between incidence rate and demographic factors. Spatial analysis was used to visualise incidence rates through space and time. Results: Between 1995 and 2011, 93.9% of reported dengue cases were LA, mainly in the 'Cairns and Hinterland' district; 49.7% were males, and the mean age was 38.0 years old. The sources of imported cases (6.1%) were Indonesia (24.6%), Papua New Guinea (23.2%), Thailand (13.4%), East Timor (8.9%) and the Philippines (6.7%), consistent with national data. Travellers importing dengue were predominantly in the age groups 30-34 and 45-49 years old, whereas the age range of patients who acquired dengue locally was larger. The number of LA cases correlated with the number of viraemic importations. Duration of viraemia of public health importance was positively correlated with the delay in notification. Dengue incidence varied over the year and was typically highest in summer and autumn. However, dengue activity has been reported in winter, and a number of outbreaks resulted in transmission year-round. Conclusions: This study emphasizes the importance of delay in notification and consequent duration of viraemia of public health importance for dengue outbreak duration. It also highlights the need for targeted vector control programmes and surveillance of travellers at airports as well as regularly affected local areas. Given the likely increase in dengue transmission with climate change, endemicity in NQ may become a very real possibility

    XAFS atomistic insight of the oxygen gettering in Ti/HfO2 based OxRRAM

    Get PDF
    Hafnia-based resistive memories technology has come to maturation and acceded to the market of nonvolatile memories. Nevertheless, the physical mechanisms involved in resistive switching are not yet fully understood and the numerous ab initio simulations studies have few many atomic-scale experimental counterparts. In this study we investigate the oxygen migration mechanism from an amorphous HfO2 layer to the Ti cap layer at a local scale before and after a thermal treatment. X-ray absorption spectroscopy at the Ti K edge and Hf L(III )edge has been performed on samples as-deposited and annealed in Ar at 400 degrees C to mimic the back-end-of-line thermal budget (BEOL) of CMOS technology. The short-range Ti and Hf environments have been determined, showing that annealing promotes the migration of O from HfO2 to Ti, the amount of which is quantified. This provokes an expansion and an increase of atomic disorder in the Ti lattice. The nature of the oxygen gettering mechanism by the Ti metal is understood by comparing samples with increasing Ti-capping thickness. We show that the Ti getter effect has to be activated by thermal treatment and that the O diffusion takes place in a region of a few nanometers close to the Ti/HfO2 interface. Therefore, the thermal budget history and the Ti cap-layer thickness determine the oxygen vacancy content in the HfO2 layer, which in turn controls the electrical properties, especially the forming operation

    Adaptive density estimation for stationary processes

    Get PDF
    We propose an algorithm to estimate the common density ss of a stationary process X1,...,XnX_1,...,X_n. We suppose that the process is either β\beta or τ\tau-mixing. We provide a model selection procedure based on a generalization of Mallows' CpC_p and we prove oracle inequalities for the selected estimator under a few prior assumptions on the collection of models and on the mixing coefficients. We prove that our estimator is adaptive over a class of Besov spaces, namely, we prove that it achieves the same rates of convergence as in the i.i.d framework

    Surveillance strategies for Classical Swine Fever in wild boar – a comprehensive evaluation study to ensure powerful surveillance

    Get PDF
    Surveillance of Classical Swine Fever (CSF) should not only focus on livestock, but must also include wild boar. To prevent disease transmission into commercial pig herds, it is therefore vital to have knowledge about the disease status in wild boar. In the present study, we performed a comprehensive evaluation of alternative surveillance strategies for Classical Swine Fever (CSF) in wild boar and compared them with the currently implemented conventional approach. The evaluation protocol was designed using the EVA tool, a decision support tool to help in the development of an economic and epidemiological evaluation protocol for surveillance. To evaluate the effectiveness of the surveillance strategies, we investigated their sensitivity and timeliness. Acceptability was analysed and finally, the cost-effectiveness of the surveillance strategies was determined. We developed 69 surveillance strategies for comparative evaluation between the existing approach and the novel proposed strategies. Sampling only within sub-adults resulted in a better acceptability and timeliness than the currently implemented strategy. Strategies that were completely based on passive surveillance performance did not achieve the desired detection probability of 95%. In conclusion, the results of the study suggest that risk-based approaches can be an option to design more effective CSF surveillance strategies in wild boar

    Spatio-temporal optimization of sampling for bluetongue vectors (<em>Culicoides</em>) near grazing livestock

    Get PDF
    BACKGROUND: Estimating the abundance of Culicoides using light traps is influenced by a large variation in abundance in time and place. This study investigates the optimal trapping strategy to estimate the abundance or presence/absence of Culicoides on a field with grazing animals. We used 45 light traps to sample specimens from the Culicoides obsoletus species complex on a 14 hectare field during 16 nights in 2009. FINDINGS: The large number of traps and catch nights enabled us to simulate a series of samples consisting of different numbers of traps (1-15) on each night. We also varied the number of catch nights when simulating the sampling, and sampled with increasing minimum distances between traps. We used resampling to generate a distribution of different mean and median abundance in each sample. Finally, we used the hypergeometric distribution to estimate the probability of falsely detecting absence of vectors on the field. The variation in the estimated abundance decreased steeply when using up to six traps, and was less pronounced when using more traps, although no clear cutoff was found. CONCLUSIONS: Despite spatial clustering in vector abundance, we found no effect of increasing the distance between traps. We found that 18 traps were generally required to reach 90% probability of a true positive catch when sampling just one night. But when sampling over two nights the same probability level was obtained with just three traps per night. The results are useful for the design of vector monitoring programmes on fields with grazing animals

    Spatial abundance and clustering of Culicoides (Diptera: Ceratopogonidae) on a local scale

    Get PDF
    BACKGROUND: Biting midges, Culicoides, of the Obsoletus group and the Pulicaris group have been involved in recent outbreaks of bluetongue virus and the former was also involved in the Schmallenberg virus outbreak in northern Europe. METHODS: For the first time, here we investigate the local abundance pattern of these two species groups in the field by intensive sampling with a grid of light traps on 16 catch nights. Neighboring trap catches can be spatially dependent on each other, hence we developed a conditional autoregressive (CAR) model framework to test a number of spatial and non-spatial covariates expected to affect Culicoides abundance. RESULTS: The distance to sheep penned in the corner of the study field significantly increased the abundance level up to 200 meters away from the sheep. Spatial clustering was found to be significant but could not be explained by any known factors, and cluster locations shifted between catch nights. No significant temporal autocorrelation was detected. CAR models for both species groups identified a significant positive impact of humidity and significant negative impacts of precipitation and wind turbulence. Temperature was also found to be significant with a peak at just below 16 degrees Celcius. Surprisingly, there was a significant positive impact of wind speed. The CAR model for the Pulicaris group also identified a significant attraction to the smaller groups of sheep placed in the field. Furthermore, a large number of spatial covariates which were incorrectly found to be significant in ordinary regression models were not significant in the CAR models. The 95% C.I. on the prediction estimates ranged from 20.4% to 304.8%, underlining the difficulties of predicting the abundance of Culicoides. CONCLUSIONS: We found that significant spatial clusters of Culicoides moved around in a dynamic pattern varying between catch nights. This conforms with the modeling but was not explained by any of the tested covariates. The mean abundance within these clusters was up to 11 times higher for the Obsoletus group and 4 times higher for the Pulicaris group compared to the rest of the field

    Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae), vectors of Orbiviruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic <it>Culicoides </it>(Diptera: Ceratopogonidae) to transmit the virus. Some aspects of <it>Culicoides </it>ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates.</p> <p>Our aim was to compare typical animal-baited traps (drop trap and direct aspiration) to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect <it>Culicoides</it>).</p> <p>Methods/results</p> <p>Collections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France), with 3 replicates of a 4 sites Ă— 4 traps randomized Latin square using one sheep per site. Collected <it>Culicoides </it>individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 <it>Culicoides </it>belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species) whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species). Significant between-trap differences abundance and parity rates were observed.</p> <p>Conclusions</p> <p>Only the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of <it>Culicoides </it>and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate accurately <it>Culicoides </it>biting rate.</p
    • …
    corecore