24,603 research outputs found

    Herschel-ATLAS: Blazars in the science demonstration phase field

    Get PDF
    To investigate the poorly constrained sub-mm counts and spectral properties of blazars we searched for these in the Herschel-ATLAS (H-ATLAS) science demonstration phase (SDP) survey catalog.

We cross-matched 500 μm sources brighter than 50 mJy with the FIRST radio catalogue. We found two blazars, both previously known. Our study is among the first blind blazar searches at sub-mm wavelengths, i.e., in the spectral regime where little is still known about the blazar SEDs, but where the synchrotron peak of the most luminous blazars is expected to occur. Our early results are consistent with educated extrapolations of lower frequency counts and question indications of substantial spectral curvature downwards and of spectral upturns at mm wavelengths. One of the two blazars is identified with a Fermi/LAT γ-ray source and a WMAP source. The physical parameters of the two blazars are briefly discussed. These observations demonstrate that the H-ATLAS survey will provide key information about the physics of blazars and their contribution to sub-mm counts

    A Sunyaev-Zel'Dovich-Selected Sample of the Most Massive Galaxy Clusters in the 2500 deg^2 South Pole Telescope Survey

    Get PDF
    The South Pole Telescope (SPT) is currently surveying 2500 deg^2 of the southern sky to detect massive galaxy clusters out to the epoch of their formation using the Sunyaev-Zel'dovich (SZ) effect. This paper presents a catalog of the 26 most significant SZ cluster detections in the full survey region. The catalog includes 14 clusters which have been previously identified and 12 that are new discoveries. These clusters were identified in fields observed to two differing noise depths: 1500 deg^2 at the final SPT survey depth of 18 μK arcmin at 150 GHz and 1000 deg^2 at a depth of 54 μK arcmin. Clusters were selected on the basis of their SZ signal-to-noise ratio (S/N) in SPT maps, a quantity which has been demonstrated to correlate tightly with cluster mass. The S/N thresholds were chosen to achieve a comparable mass selection across survey fields of both depths. Cluster redshifts were obtained with optical and infrared imaging and spectroscopy from a variety of ground- and space-based facilities. The redshifts range from 0.098 ≤ z ≤ 1.132 with a median of z_(med) = 0.40. The measured SZ S/N and redshifts lead to unbiased mass estimates ranging from 9.8 × 10^(14) M_☉ h^(–1)_(70) ≤ M _(200(ρmean)) ≤ 3.1 × 10^(15) M_☉ h^(–1)_(70). Based on the SZ mass estimates, we find that none of the clusters are individually in significant tension with the ΛCDM cosmological model. We also test for evidence of non-Gaussianity based on the cluster sample and find the data show no preference for non-Gaussian perturbations

    Non-equilibrium properties of the S=1/2 Heisenberg model in a time-dependent magnetic field

    Full text link
    The time-dependent behavior of the Heisenberg model in contact with a phonon heat bath and in an external time-dependent magnetic field is studied by means of a path integral approach. The action of the phonon heat bath is taken into account up to the second order in the coupling to the heath bath. It is shown that there is a minimal value of the magnetic field below which the average magnetization of the system does not relax to equilibrium when the external magnetic field is flipped. This result is in qualitative agreement with the mean field results obtained within ϕ4\phi^{4}-theory.Comment: To be published in Physica
    corecore