343 research outputs found

    Systematic Review of Psychological and Behavioral Correlates of Recreational Running

    Get PDF
    Introduction: The aim of this review was to systematically synthesize the published literature describing the psychological and behavioral correlates of recreational running in adults, defined as running for leisure, with or without a competitive component. Methods: Quantitative research published in peer-reviewed journals until January 2021 were included. Studies were identified through MEDLINE, PsycINFO, SPORTDiscus, and Web of Science and were included in this review if they (1) were aimed at recreational running, (2) included general adult samples (18 years or older, without a diagnosed medical condition or metabolic disorder), and (3) assessed psychological or behavioral correlates of recreational running. Results: Fifty-six articles reporting 58 studies met the eligibility criteria and were included. There were 27 cross-sectional studies, 12 longitudinal studies, and 19 trials (8 non-controlled trials, 5 controlled trials, and 6 randomized controlled trials) (n = 37,501, 1877 years old, 43% women). Twenty-eight studies assessed antecedents of running behavior, and 25 studies used running behavior as treatment or predictor of a given effect or outcome. Four studies examined both predictors and outcomes of running. Thirty-one studies showed poor quality, while 20 had fair and 7 good quality. Motives were the most frequently studied antecedent of running behavior (k = 19), and results suggest that the highest-ranked or more prevalent motives were physical health, psychological motives, and personal achievement. Additionally, perceived control, attitude toward running, intention and subjective norms, self-efficacy, and social support may have also played a role in the adoption of recreational running. Moreover, improvements in mood (k = 10) and well-being (k = 10) were the most frequently reported positive outcomes of running. Reductions in depression, anxiety, and stress were also reported in included studies. Discussion: To our knowledge, this is the first systematic review on this topic. The identification of behavioral and psychological correlates of recreational running across populations can contribute to inform and guide a public policy agenda, focused on helping people sustain regular physical activity, through a modality they have chosen and appear to enjoy. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=68954, identifier: CRD42017068954.info:eu-repo/semantics/publishedVersio

    3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization

    Get PDF
    In the last few decades, consumers' growing attention to the close relationship between health and nutrition is emerging as a new trend, mostly regarding the incorporation of natural ingredients into food. Among those ingredients, microalgae are considered as innovative and promising compounds, rich in valuable nutrients and bioactive molecules. In the present work, 3D printed cookies were fortified with the microalga Arthrospira platensis aiming at developing a new functional food with antioxidant properties. A. platensis antioxidants were recovered using ultrasound-assisted extraction in hydroalcoholic solutions. Ethanol/water and biomass/solvent ratios were optimised through a Design of Experiments (DOE) approach, using the antioxidant activity (ORAC and ABTS) and total phenolic content (TPC) as response variables. The highest ORAC, ABTS and TPC values were observed in the extract obtained with 0% ethanol and 2.0% biomass; thus, this extract was chosen to be incorporated into a printable cookie dough. Three different incorporation approaches were followed: (1) dried biomass, (2) freeze-dried antioxidant extract and (3) antioxidant extract encapsulated into alginate microbeads to enhance the stability to heat, light, and oxygen during baking and further storage. All dough formulations presented shape fidelity with the 3D model. The cookies had aw values low enough to be microbiologically stable, and the texture remained constant after 30 days of storage. Moreover, the extract encapsulation promoted an improvement in the ORAC value and colour stability when compared to all other formulations, revealing the potential of A. platensis for the development of a functional 3D food-ink.This work was funded by the European Union INTERREG Atlantic Area Programme and the European Regional Development Fund (ERDF) through the project “Enhance Microalgae: High added-value industrial opportunities for microalgae in the Atlantic Area” (Ref. EAPA_338/2016).info:eu-repo/semantics/publishedVersio

    How additive manufacturing can boost the bioactivity of baked functional foods

    Get PDF
    The antioxidant activity of baked foods is of utmost interest when envisioning enhancing their health benefits. Incorporating functional ingredients is challenging since their bioactivity naturally declines during baking. In this study, 3D food printing and design of experiments are employed to clarify how the antioxidant activity of cookies enriched with encapsulated polyphenols can be maximized. A synergistic effect between encapsulation, time, temperature, number of layers, and infill of the printed cookies was observed on the moisture and antioxidant activity. Four-layer cookies with 30% infill provided the highest bioactivity and phenolic content if baked for 10 min and at 180 °C. The bioacitivity and total phenolic content improved by 115% and 173%, respectively, comparing to free extract cookies.Moreover, the proper combination of the design and baking variables allowed to vary the bioactivity of cooked cookies (moisture 35%) between 300 and 700 ?molTR/gdry. The additive manufacture of foods with interconnected pores could accelerate baking and browning, or reduce thermal degradation. This represents a potential approach to enhance the functional and healthy properties of cookies or other thermal treated bioactive food products.The research leading to these results has received funding from FODIAC – Food for Diabetes and Cognition, funded by European Union, under the call Marie Skłodowsk-Curie Research and Innovation Staff Exchange (Ref. H2020-MSCA-RISE-778388); PhD grantship from Fondazione di Piacenza e Vigevano (Doctoral School on the Agro-Food System, Università Cattolica del Sacro Cuore); Fondazione Cariplo through the project ReMarcForFood – Biotechnological strategies for the conversion of Winemaking by-products and their recycling into the food chain: development of new concepts of use, 2016-0740 grant.info:eu-repo/semantics/publishedVersio

    Ultrasonication processing for the production of plant-based nanoemulsions

    Get PDF
    Plant-derived proteins have been emerging and growing in interest over the past few years, due to their interesting properties and the trend to replace animal-derived proteins [1]. Ultrasonication processing can be used to develop nanoemulsions based on plant proteins that are kinetically stabilized by their small dimension, unlike classic emulsions [2]. In this work, oil-in-water nanoemulsions were produced through high-speed homogenization, followed by ultrasonic homogenization (US), using different plant-derived proteins, including potato (Solanum tuberosum), lupin (Lupinus angustifolius), pea (Pisum sativum), chickpea (Cicer arietinum) and faba bean (Vicia faba) protein as emulsifiers. A central composite rotatable experimental design was used to evaluate the influence of three independent variables: water/oil ratio (65-75% of water), protein content (1-6%) and US time (1-7 min) on the size average (by intensity) and polydispersity index (PDI) of the nanoemulsions. A total of 17 experiments were performed with 14 three-level experimental points, and 3 replicates at the central point. The effect of the US time (0, 3, 4.5 and 6 min) in the potato and lupin proteins primary and secondary structures were analysed through SDS-PAGE electrophoresis and circular dichroism, respectively. Results showed that the use of potato, lupin and pea proteins lead to the formation of stable nanoemulsions, while chickpea and faba bean proteins resulted in non-stable nanoemulsions, with phase separation. The smallest mean droplet size for potato protein was 439.9 nm and PDI value 0.464 [21:73 (w/w) oil/water ratio, 6% of protein and 6 min of US]. The smallest mean droplet size for lupin protein was 505.5 nm and PDI value 0.434, and for pea protein the droplet size was 551.3 nm and PDI value 0.249 [23.6:73 (w/w) oil/water ratio, 3.4% of protein and 6 min of US]. Electrophoresis results show that for native potato and lupin samples the ultrasonication did not induce significant changes in the protein pattern, indicating that the US treatment did not modify the primary structure. Regarding the second structure, US did not change the secondary structure of potato protein but induced a slight increase of -helix for all US treatments for lupin protein. Stable nanoemulsions can be developed using plant-derived proteins and ultrasonication, foreseeing different applications in the food industry.This study was supported by the project cLabel+ (POCI-01-0247-FEDER-046080) cofinanced by Compete 2020, Lisbon 2020, Portugal 2020 and the European Union, through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Exploring the correlations between epi indicators of COVID-19 and the concentration of pharmaceutical compounds in Wastewater Treatment Plants in Northern Portugal

    Get PDF
    The COVID-19 pandemic caused by the SARS-CoV-2 virus led to changes in the lifestyle and human behaviour, which resulted in different consumption patterns of some classes of pharmaceuticals including curative, symptom-relieving, and psychotropic drugs. The trends in the consumption of these compounds are related to their concentrations in wastewater systems, since incompletely metabolised drugs (or their metabolites back transformed into the parental form) may be detected and quantified by analytical methods. Pharmaceuticals are highly recalcitrant compounds and conventional activated sludge processes implemented in wastewater treatment plants (WWTP) are ineffective at degrading these substances. As a results, these compounds end up in waterways or accumulate in the sludge, being a serious concern given their potential effects on ecosystems and public health. Therefore, it is crucial to evaluate the presence of pharmaceuticals in water and sludge to assist in the search for more effective processes. In this work, eight pharmaceuticals from five therapeutic classes were analysed in wastewater and sludge samples collected in two WWTP located in the Northern Portugal, during the third COVID-19 epidemic wave in Portugal. The two WWTP demonstrated a similar pattern with respect to the concentration levels in that period. However, the drugs loads reaching each WWTP were dissimilar when normalising the concentrations to the inlet flow rate. Acetaminophen (ACET) was the compound detected at highest concentrations in aqueous samples of both WWTP (98. 516 g L1 in WWTP2 and 123. 506 g L1in WWTP1), indicating that this drug is extensively used without the need of a prescription, known of general public knowledge as an antipyretic and analgesic agent to treat pain and fever. The concentrations determined in the sludge samples were below 1.65 µg g1 in both WWTP, the highest value being found for azithromycin (AZT). This result may be justified by the physico-chemical characteristics of the compound that favour its adsorption to the sludge surface through ionic interactions. It was not possible to establish a clear relationship between the incidence of COVID-19 cases in the sewer catchment and the concentration of drugs detected in the same period. However, looking at the data obtained, the high incidence of COVID-19 in January 2021 is in line with the high concentration of drugs detected in the aqueous and sludge samples but prediction of drug load from viral load data was unfeasible.This study was supported by the Competitiveness and Internationalisation Operational Programme, Lisbon Regional Operational Programme and Algarve Regional Operational Programme with the support of FEDER, through the Incentive Scheme: research and development activities and investment in testing and optimisation (upscaling) infrastructures in the context of COVID-19, through the Project “SARS CONTROL: Evaluation of the impacts of SARS-CoV-2 on the urban water cycle and the downstream effects on Public Health" (Ref. 070076). Acknowledge is also due to the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit, and by LABBELS – Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, LA/P/0029/2020. Strategic funding from FCT to cE3c and BioISI Research Units (UIDB/00329/2020 and UIDB/04046/2020) and to the Associate Laboratory CHANGE (LA/P/0121/2020) is also gratefully acknowledged. ARS holds an FCT grant SFRH/BD/131905/2017 and COVID/BD/151951/2021.ARLR and MFRP acknowledge the financial support from LA/P/0045/2020 (ALiCE), UIDB/50020/2020 and UIDP/50020/2020 (LSRE-LCM), funded by national funds through FCT/MCTES (PIDDAC). ARLR acknowledges FCT funding under DL57/2016 Transitory Norm Programme.info:eu-repo/semantics/publishedVersio

    Delay of EGF-Stimulated EGFR Degradation in Myotonic Dystrophy Type 1 (DM1)

    Get PDF
    Funding Information: This research was supported by the Isabel Gemio Foundation (P18–13) and was also partially supported by the “Fondo Europeo de Desarrollo Regional” (FEDER) from the European Union. E.A.-C. was supported by a pre-doctoral fellowship of Valhondo Calaff Foundation. S.C.-C. and E.U.-C. were supported by FPU fellowships (FPU19/04435 and FPU16/00684, respectively) from the Ministerio de Ciencia, Innovación y Universidades, Spain. M.P.-B. and A.G.-B. received fellowships from the “Plan Propio de Iniciación a la Investigación, Desarrollo Tecnológico e Innovación (Universidad de Extremadura). M.N.-S. was supported by the “Ramon y Cajal” Program (RYC-2016–20883), and P.G.-S., was funded by “Juan de la Cierva Incorporación” Program (IJC2019–039229-I), Spain. S.M.S.Y.-D. was supported by the Isabel Gemio Foundation and CIBERNED (CB06/05/0041). J.M.F received research support from the Isabel Gemio Foundation and the “Instituto de Salud Carlos” III, CIBERNED (CB06/05/0041). Publisher Copyright: © 2022 by the authors.Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3′ untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not. AKT has a critical role in endocytosis, and its phosphorylation is mediated by the activation of tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR). EGF-activated EGFR triggers the internalization and degradation of ligand–receptor complexes that serve as a PI3K/AKT signaling platform. Here, we used primary fibroblasts from healthy subjects and DM1 patients. DM1-derived fibroblasts showed increased autophagy flux, with enlarged endosomes and lysosomes. Thereafter, cells were stimulated with a high concentration of EGF to promote EGFR internalization and degradation. Interestingly, EGF binding to EGFR was reduced in DM1 cells and EGFR internalization was also slowed during the early steps of endocytosis. However, EGF-activated EGFR enhanced AKT and ERK1/2 phosphorylation levels in the DM1-derived fibroblasts. Therefore, there was a delay in EGF-stimulated EGFR endocytosis in DM1 cells; this alteration might be due to the decrease in the binding of EGF to EGFR, and not to a decrease in AKT phosphorylation.publishersversionpublishe

    In Vitro Surfactant Structure-Toxicity Relationships: Implications for Surfactant Use in Sexually Transmitted Infection Prophylaxis and Contraception

    Get PDF
    Background The need for woman-controlled, cheap, safe, effective, easy-to-use and easy-to-store topical applications for prophylaxis against sexually transmitted infections (STIs) makes surfactant-containing formulations an interesting option that requires a more fundamental knowledge concerning surfactant toxicology and structure-activity relationships. Methodology/Principal Findings We report in vitro effects of surfactant concentration, exposure time and structure on the viability of mammalian cell types typically encountered in the vagina, namely, fully polarized and confluent epithelial cells, confluent but non-polarized epithelial-like cells, dendritic cells, and human sperm. Representatives of the different families of commercially available surfactants – nonionic (Triton X-100 and monolaurin), zwitterionic (DDPS), anionic (SDS), and cationic (CnTAB (n = 10 to 16), C12PB, and C12BZK) – were examined. Triton X-100, monolaurin, DDPS and SDS were toxic to all cell types at concentrations around their critical micelle concentration (CMC) suggesting a non-selective mode of action involving cell membrane destabilization and/or destruction. All cationic surfactants were toxic at concentrations far below their CMC and showed significant differences in their toxicity toward polarized as compared with non-polarized cells. Their toxicity was also dependent on the chemical nature of the polar head group. Our results suggest an intracellular locus of action for cationic surfactants and show that their structure-activity relationships could be profitably exploited for STI prophylaxis in vaginal gel formulations. The therapeutic indices comparing polarized epithelial cell toxicity to sperm toxicity for all surfactants examined, except C12PB and C12BZK, does not justify their use as contraceptive agents. C12PB and C12BZK are shown to have a narrow therapeutic index recommending caution in their use in contraceptive formulations. Conclusions/Significance Our results contribute to understanding the mechanisms involved in surfactant toxicity, have a predictive value with regard to their safety, and may be used to design more effective and less harmful surfactants for use in topical applications for STI prophylaxis.Foundation for Science and Technology of the Portuguese Ministry of Science and Higher Educatio

    Contribution for new genetic markers of rheumatoid arthritis activity and severity : sequencing of the tumor necrosis factor-alpha gene promoter

    Get PDF
    © 2007 Fonseca et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe objective of this study was to assess whether clinical measures of rheumatoid arthritis activity and severity were influenced by tumor necrosis factor-alpha (TNF-alpha) promoter genotype/haplotype markers. Each patient's disease activity was assessed by the disease activity score using 28 joint counts (DAS28) and functional capacity by the Health Assessment Questionnaire (HAQ) score. Systemic manifestations, radiological damage evaluated by the Sharp/van der Heijde (SvdH) score, disease-modifying anti-rheumatic drug use, joint surgeries, and work disability were also assessed. The promoter region of the TNF-alpha gene, between nucleotides -1,318 and +49, was sequenced using an automated platform. Five hundred fifty-four patients were evaluated and genotyped for 10 single-nucleotide polymorphism (SNP) markers, but 5 of these markers were excluded due to failure to fall within Hardy-Weinberg equilibrium or to monomorphism. Patients with more than 10 years of disease duration (DD) presented significant associations between the -857 SNP and systemic manifestations, as well as joint surgeries. Associations were also found between the -308 SNP and work disability in patients with more than 2 years of DD and radiological damage in patients with less than 10 years of DD. A borderline effect was found between the -238 SNP and HAQ score and radiological damage in patients with 2 to 10 years of DD. An association was also found between haplotypes and the SvdH score for those with more than 10 years of DD. An association was found between some TNF-alpha promoter SNPs and systemic manifestations, radiological progression, HAQ score, work disability, and joint surgeries, particularly in some classes of DD and between haplotypes and radiological progression for those with more than 10 years of DD.This work was supported by grant POCTI/SAU-ESP/59111/2004 from Fundação Ciência e Tecnologia.info:eu-repo/semantics/publishedVersio

    Clinical oxidative stress during leprosy multidrug therapy:impact of dapsone oxidation

    Get PDF
    This study aims to assess the oxidative stress in leprosy patients under multidrug therapy (MDT; dapsone, clofazimine and rifampicin), evaluating the nitric oxide (NO) concentration, catalase (CAT) and superoxide dismutase (SOD) activities, glutathione (GSH) levels, total antioxidant capacity, lipid peroxidation, and methemoglobin formation. For this, we analyzed 23 leprosy patients and 20 healthy individuals from the Amazon region, Brazil, aged between 20 and 45 years. Blood sampling enabled the evaluation of leprosy patients prior to starting multidrug therapy (called MDT 0) and until the third month of multidrug therapy (MDT 3). With regard to dapsone (DDS) plasma levels, we showed that there was no statistical difference in drug plasma levels between multibacillary (0.518±0.029 μg/mL) and paucibacillary (0.662±0.123 μg/mL) patients. The methemoglobin levels and numbers of Heinz bodies were significantly enhanced after the third MDTsupervised dose, but this treatment did not significantly change the lipid peroxidation and NO levels in these leprosy patients. In addition, CAT activity was significantly reduced in MDT-treated leprosy patients, while GSH content was increased in these patients. However, SOD and Trolox equivalent antioxidant capacity levels were similar in patients with and without treatment. These data suggest that MDT can reduce the activity of some antioxidant enzyme and influence ROS accumulation, which may induce hematological changes, such as methemoglobinemia in patients with leprosy. We also explored some redox mechanisms associated with DDS and its main oxidative metabolite DDS-NHOH and we explored the possible binding of DDS to the active site of CYP2C19 with the aid of molecular modeling software
    • …
    corecore