4 research outputs found

    Potential and challenges of AI-powered decision support for short-term system operations

    No full text
    Given the increasing need to meet the new operational requirements of power systems and prepare for the future, adaptation of cutting-edge Artificial Intelligence (AI) technologies in the operational processes is paramount to timely meet the challenges. The focus of this paper is on applying AI in power system operations, in particular for the development of decision support tools. First, the paper elaborates on the decision-making process of the power system operators and presents a mirroring digital framework consisting of AI and control theory to mimic sequential decision making of the operators. Next, a demonstrating example in the field of congestion management is presented by a real-world AI use-case at TenneT TSO. The paper continues with state-of-the-art on sequential decision making applied to congestion management and elaborates on research challenges when applying AI to the power systems problems. Finally, the paper elaborates on the enabling capabilities with focus on people, data, and platform pillars an organisation needs for mastering the development as well as maintenance of AI solutions, and proposes a cyclic (agile) process approach to decrease time from development to actual deployment and cooperation between research and industry organisations.Intelligent Electrical Power Grid

    Exploring grid topology reconfiguration using a simple deep reinforcement learning approach

    No full text
    System operators are faced with increasingly volatile operating conditions. In order to manage system reliability in a cost-effective manner, control room operators are turning to computerised decision support tools based on AI and machine learning. Specifically, Reinforcement Learning (RL) is a promising technique to train agents that suggest grid control actions to operators. In this paper, a simple baseline approach is presented using RL to represent an artificial control room operator that can operate a IEEE 14-bus test case for a duration of 1 week. This agent takes topological switching actions to control power flows on the grid, and is trained on only a single well-chosen scenario. The behaviour of this agent is tested on different time-series of generation and demand, demonstrating its ability to operate the grid successfully in 965 out of 1000 scenarios. The type and variability of topologies suggested by the agent are analysed across the test scenarios, demonstrating efficient and diverse agent behaviour.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Intelligent Electrical Power Grid

    Perspectives on Future Power System Control Centers for Energy Transition

    No full text
    Today's power systems are seeing a paradigm shift under the energy transition, sparkled by the electrification of demand, digitalisation of systems, and an increasing share of decarbonated power generation. Most of these changes have a direct impact on their control centers, forcing them to handle weather-based energy resources, new interconnections with neighbouring transmission networks, more markets, active distribution networks, micro-grids, and greater amounts of available data. Unfortunately, these changes have translated during the past decade to small, incremental changes, mostly centered on hardware, software, and human factors. We assert that more transformative changes are needed, especially regarding humancentered design approaches, to enable control room operators to manage the future power system. This paper discusses the evolution of operators towards continuous operation planners, monitoring complex time horizons thanks to adequate real-time automation. Reviewing upcoming challenges as well as emerging technologies for power systems, we present our vision of a new evolutionary architecture for control centers, both at backend and frontend levels. We propose a unified hypervision scheme based on structured decision-making concepts, providing operators with proactive, collaborative, and effective decision support.Intelligent Electrical Power Grid

    The Oceanographic Multipurpose Software Environment (OMUSE v1.0)

    No full text
    In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.Environmental Fluid Mechanic
    corecore