95 research outputs found
Food sensing : detection of bacillus cereus spores in dairy products
Milk is a source of essential nutrients for infants and adults, and its production has increased worldwide over the past years. Despite developments in the dairy industry, premature spoilage of milk due to the contamination by Bacillus cereus continues to be a problem and causes considerable economic losses. B. cereus is ubiquitously present in nature and can contaminate milk through a variety of means from the farm to the processing plant, during transport or distribution. There is a need to detect and quantify spores directly in food samples, because B. cereus might be present in food only in the sporulated form. Traditional microbiological detection methods used in dairy industries to detect spores show limits of time (they are time consuming), efficiency and sensitivity. The low level of B. cereus spores in milk implies that highly sensitive detection methods should be applied for dairy products screening for spore contamination. This review describes the advantages and disadvantages of classical microbiological methods used to detect B. cereus spores in milk and milk products, related to novel methods based on molecular biology, biosensors and nanotechnology
Food Sensing: Detection of Bacillus cereus Spores in dairy products
Milk is a source of essential nutrients for infants and adults, whose production increases worldwide over the past years. Despite developments in the dairy industry, premature spoilage of milk due to the contamination by Bacillus cereus continues to be a problem and causes considerable economic losses. B. cereus is ubiquitously present in nature, and can contaminate milk through a variety of means from the farm to the processing plant, during transport or distribution. There is a need to detect and quantify spores directly in food samples because B. cereus might be present in food only in the sporulated form. Traditional microbiological detection methods used in dairy industries to detect spores show limits of time (they are time consuming), efficiency and sensitivity. The low level of B. cereus spores in milk implies that highly sensitive detection methods should be applied for dairy products screening for spore contamination. This review describes advantages and disadvantages of classical microbiological methods used to detect B. cereus spores in milk and milk products, related to novel methods based on molecular biology, biosensor and nanotechnology
Advanced biosensors for detection of pathogens related to livestock and poultry
Infectious animal diseases caused by pathogenic microorganisms such as bacteria and viruses threaten the health
and well-being of wildlife, livestock, and human populations, limit productivity and increase significantly economic
losses to each sector. The pathogen detection is an important step for the diagnostics, successful treatment of animal
infection diseases and control management in farms and field conditions. Current techniques employed to diagnose
pathogens in livestock and poultry include classical plate-based methods and conventional biochemical methods as
enzyme-linked immunosorbent assays (ELISA). These methods are time-consuming and frequently incapable to distinguish
between low and highly pathogenic strains. Molecular techniques such as polymerase chain reaction (PCR)
and real time PCR (RT-PCR) have also been proposed to be used to diagnose and identify relevant infectious disease
in animals. However these DNA-based methodologies need isolated genetic materials and sophisticated instruments,
being not suitable for in field analysis. Consequently, there is strong interest for developing new swift point-of-care
biosensing systems for early detection of animal diseases with high sensitivity and specificity. In this review, we provide
an overview of the innovative biosensing systems that can be applied for livestock pathogen detection. Different
sensing strategies based on DNA receptors, glycan, aptamers and antibodies are presented. Besides devices still at
development level some are validated according to standards of the World Organization for Animal Health and are
commercially available. Especially, paper-based platforms proposed as an affordable, rapid and easy to perform sensing
systems for implementation in field condition are included in this review
Metal oxide nanoparticles as active food packaging components
Replacement of non-degradable food packaging materials with a biodegradable alternative
enables reduction of environmental pollution. Metal oxides nanoparticles are good candidates
for enhancing and ensuring good mechanical, thermal and barrier properties of biodegradable
polymer packaging films. Their incorporation in biodegradable food packaging films has also
lead to enhanced antioxidant, antifungal and antibacterial properties of the food packaging
and also oxygen barrier properties, UV protection, oxygen and ethylene scavenging resulting
in an active food packaging material. The synthesis method has a significant influence on the
resulting properties of metal oxide nanoparticles. Green synthesis using plant extracts and
extracts of plant bio-waste as reducing and capping agents are one direction for obtaining
metal oxide nanoparticles with improved antioxidant and antimicrobial properties. Utilization
of bio-waste materials both for metal oxide nanoparticle synthesis and as a source of
biopolymers for packaging enables better environmental protection and ensures a circular bioeconomy. In selection of metal oxide nanoparticles suitable for application in active
packaging bio-nano-composites special attention needs to be paid to nanoparticle migration
and cytotoxic activity in order to produce safe, active and biodegradable food packaging
materials for the future
ZnO and Fe2TiO5 Nanoparticles Obtained by Green Synthesis as Active Components of Alginate Food Packaging Films
In this paper, we have systematically studied the structural, morphological, and optical properties of Ni-doped TiO2, synthesized via a simple, cost-effective electrospinning method followed by calcination at 500 C. The nanofibers with a core-shell structure were relatively homogeneous, smooth and randomly oriented, and there were no significant differences in fiber diameters due to Ni2+ content. Core loss mapping using electron energy loss spectroscopy confirmed an even distribution of titanium and relatively uniform nickel in the fibers. It was found that doping with 0.5 mol.% Ni2+ decreased the rutile content, while doping with 1 mol.% Ni2+ resulted in a pure anatase phase with a significantly increased specific surface area (36.6 m2/g). Further increase in Ni2+ content (3-10 mol.%) not only prolonged the response of TiO2 nanofibers to visible light, but also increased the specific surface area (49.5 m2/g), decreased crystallite size (7 nm), and increased rutile content in TiO2 (33 wt.%). Photoluminescence analysis revealed that doping TiO2 with different amounts of Ni2+ leads to a gradual decrease of emission spectra intensity and red shift in the maxima positions. The XPS results confirmed that as the Ni2+ content enlarged, the Ti2+ and Ti3+ content increased significantly, effectively promoting the formation of oxygen vacancies. Raman analysis showed that an increase in nickel content (3-5 mol.%) led to a decrease and shift in peak intensity due to Ti3+ formation and also the possible presence of NiTiO3 phases. HRTEM analysis showed that Ni was doped into the substitution sites of both the anatase and rutile TiO2 lattice but had a stronger influence on the distortion of the anatase phase. The obtained results indicate that Ni-doped TiO2 nanofibers are good candidates for photocatalytic applications
Transcriptomic Analysis of Host Immune and Cell Death Responses Associated with the Influenza A Virus PB1-F2 Protein
Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-Îł as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the mechanisms by which PB1-F2 mediates virulence
IlsA, A Unique Surface Protein of Bacillus cereus Required for Iron Acquisition from Heme, Hemoglobin and Ferritin
The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts
Two Chromogranin A-Derived Peptides Induce Calcium Entry in Human Neutrophils by Calmodulin-Regulated Calcium Independent Phospholipase A2
Background: Antimicrobial peptides derived from the natural processing of chromogranin A (CgA) are co-secreted with catecholamines upon stimulation of chromaffin cells. Since PMNs play a central role in innate immunity, we examine responses by PMNs following stimulation by two antimicrobial CgA-derived peptides. Methodology/Principal Findings: PMNs were treated with different concentrations of CgA-derived peptides in presence of several drugs. Calcium mobilization was observed by using flow cytometry and calcium imaging experiments. Immunocytochemistry and confocal microscopy have shown the intracellular localization of the peptides. The calmodulin-binding and iPLA2 activating properties of the peptides were shown by Surface Plasmon Resonance and iPLA2 activity assays. Finally, a proteomic analysis of the material released after PMNs treatment with CgA-derived peptides was performed by using HPLC and Nano-LC MS-MS. By using flow cytometry we first observed that after 15 s, in presence of extracellular calcium, Chromofungin (CHR) or Catestatin (CAT) induce a concentration-dependent transient increase of intracellular calcium. In contrast, in absence of extra cellular calcium the peptides are unable to induce calcium depletion from the stores after 10 minutes exposure. Treatment with 2-APB (2-aminoethoxydiphenyl borate), a store operated channels (SOCs) blocker, inhibits completely the calcium entry, as shown by calcium imaging. We also showed that they activate iPLA2 as the two CaM-binding factors (W7 and CMZ) and that the two sequences can be aligned with the two CaMbinding domains reported for iPLA2. We finally analyzed by HPLC and Nano-LC MS-MS the material released by PMNs following stimulation by CHR and CAT. We characterized several factors important for inflammation and innate immunity. Conclusions/Significance: For the first time, we demonstrate that CHR and CAT, penetrate into PMNs, inducing extracellular calcium entry by a CaM-regulated iPLA2 pathway. Our study highlights the role of two CgA-derived peptides in the active communication between neuroendocrine and immune systems
- …