3 research outputs found

    Antioxidants: The new frontier for translational research in cerebroprotection

    No full text
    It is important for the anesthesiologist to understand the etiology of free radical damage and how free-radical scavengers attenuate this, so that this knowledge can be applied to diverse neuro-pathological conditions. This review will concentrate on the role of reactive species of oxygen in the pathophysiology of organ dysfunction, specifically sub arachnoid hemorrhage (SAH), traumatic brain injury (TBI) as well as global central nervous system (CNS) hypoxic, ischemic and reperfusion states. We enumerate potential therapeutic modalities that are been currently investigated and of interest for future trials. Antioxidants are perhaps the next frontier of translational research, especially in neuro-anesthesiology

    Use of oral tramadol to prevent perianesthetic shivering in patients undergoing transurethral resection of prostate under subarachnoid blockade

    No full text
    Context: Under regional anesthesia, geriatric patients are prone to shivering induced perioperative complications that Anesthesiologists should prevent rather than treat. Aim: We investigated the prophylactic efficacy of oral tramadol 50 mg to prevent the perioperative shivering after transurethral resection of prostate (TURP) surgery under subarachnoid blockade (SAB). Shivering is usually overlooked in patients undergoing urological surgery under spinal anesthesia and may result in morbidity, prolonged hospital stay and increased financial burden. Use of prophylactic measures to reduce shivering in geriatric patients who undergo urological procedures could circumvent this. Oral formulation of tramadol is a universally available cost-effective drug with the minimal side-effects. Settings and Design: Prospective, randomized, double-blinded, placebo-controlled study. Patients and Methods: A total of 80 patients who were scheduled for TURP surgery under subarachnoid block were randomly selected. Group I and II (n = 40 each) received oral tramadol 50 mg and placebo tablet respectively. After achieving subarachnoid block, the shivering, body temperature (tympanic membrane, axillary and forehead), hemodynamic parameters and arterial saturation were recorded at regular intervals. Statistical Analysis Used: T-test, analysis of variance test, Z-test and Fisher exact test were utilized while Statistical Product and Service Solutions, IBM, Chicago (SPSS statistics (version 16.0)), software was used for analysis. Results: Incidence of shivering was significantly less in patients who received tramadol (7.5% vs. 40%; P < 0.01). The use of tramadol was associated with clinically inconsequential side-effects. Conclusion: We conclude that the use of oral tramadol 50 mg is effective as a prophylactic agent to reduce the incidence, severity and duration of perioperative shivering in patients undergoing TURP surgery under SAB

    A comparison of intrathecal dexmedetomidine, clonidine, and fentanyl as adjuvants to hyperbaric bupivacaine for lower limb surgery: A double blind controlled study

    No full text
    Background: Various adjuvants are being used with local anesthetics for prolongation of intraoperative and postoperative analgesia. Dexmedetomidine, the highly selective 2 adrenergic agonist is a new neuraxial adjuvant gaining popularity. Aim: The purpose of this study was to compare the onset, duration of sensory and motor block, hemodynamic effects, postoperative analgesia, and adverse effects of dexmedetomidine, clonidine, and fentanyl used intrathecally with hyperbaric 0.5% bupivacaine for spinal anesthesia. Settings and Design: The study was conducted in prospective, double blind manner. It included 120 American Society of Anesthesiology (ASA) class I and II patients undergoing lower limb surgery under spinal anesthesia after approval from hospital ethics committee with written and informed consent of patients. Materials and Methods: The patients were randomly allocated into four groups (30 patients each). Group BS received 12.5 mg hyperbaric bupivacaine with normal saline, group BF received 12.5 mg bupivacaine with 25 g fentanyl, group BC received 12.5 mg of bupivacaine supplemented 30 g clonidine, and group BD received 12.5 mg bupivacaine plus 5 g dexmedetomidine. The onset time to reach peak sensory and motor level, the regression time of sensory and motor block, hemodynamic changes, and side effects were recorded. Results: Patients in Group BD had significantly longer sensory and motor block times than patients in Groups BC, BF, and BS with Groups BC and BF having comparable duration of sensory and motor block. The mean time of two segment sensory block regression was 147 ± 21 min in Group BD, 117 ± 22 in Group BC, 119 ± 23 in Group BF, and 102 ± 17 in Group BS (P < 0.0001). The regression time of motor block to reach modified Bromage zero (0) was 275 ± 25, 199 ± 26, 196 ± 27, 161 ± 20 in Group BD, BC, BF, and BS, respectively (P < 0.0001). The onset times to reach T8 dermatome and modified Bromage 3 motor block were not significantly different between the groups. Dexmedetomidine group showed significantly less and delayed requirement of rescue analgesic. Conclusions: Intrathecal dexmedetomidine is associated with prolonged motor and sensory block, hemodynamic stability, and reduced demand of rescue analgesics in 24 h as compared to clonidine, fentanyl, or lone bupivacaine
    corecore