31 research outputs found

    Diet during early life defines testicular lipid content and sperm quality in adulthood

    Get PDF
    Childhood obesity is a serious concern associated with ill health later in life. Emerging data suggest that obesity has long-term adverse effects upon male sexual and reproductive health but few studies addressed this issue. We hypothesized that exposure to high-fat diet during early life alters testicular lipid content and metabolism leading to permanent damage to sperm parameters. After weaning (day 21 after birth), 36 male mice were randomly divided into 3 groups and fed with different diet regimen for 200 days: CTRL-standard chow; HFD-high-fat diet (Carbohydrate: 35.7%, Protein: 20.5%, Fat: 36.0%); HFDt-high-fat diet for 60 days then replaced by standard chow. Biometric and metabolic data were monitored. Animals were then sacrificed, and tissues collected. Epididymal sperm parameters and endocrine parameters were evaluated. Testicular metabolites were extracted and characterized by 1H-NMR and GC-MS. Testicular mitochondrial and antioxidant activity were evaluated. Our results show that mice fed with high-fat diet, even if only until early adulthood, had lower sperm viability and motility, and higher incidence of head and tail defects. Although diet reversion with weight loss during adulthood prevents the progression of metabolic syndrome, testicular content in fatty acids is irreversibly affected. Excessive fat intake promoted an over-accumulation of pro-inflammatory n-6 polyunsaturated fatty acids in testis, which are strongly correlated with negative effects upon sperm quality. Therefore, the adoption of high-fat diets during early life correlates to irreversible changes in testicular lipid content and metabolism, which are related to permanent damage to sperm quality later in life

    Inherited Metabolic Memory of High-Fat Diet Impairs Testicular Fatty Acid Content and Sperm Parameters

    Get PDF
    Scope Exposure to a high-fat diet (HFD) from early-life is associated with a testicular metabolic signature link to abnormal sperm parameters up to two generations after exposure in mice. Hereby, this study describes a testicular lipid signature associate with "inherited metabolic memory" of exposure to HFD, persisting up to two generations in mice. Methods and Results Diet-challenged mice (n = 36) are randomly fed after weaning with standard chow (CTRL); HFD for 200 days or transient HFD (HFDt) (60 days of HFD + 140 days of standard chow). Subsequent generations (36 mice per generation) are fed with chow diet. Mice are euthanized 200 days post-weaning. Glucose homeostasis, serum hormones, testicular bioenergetics, and antioxidant enzyme activity are evaluated. Testicular lipid-related metabolites and fatty acids are characterized by H-1-NMR and GC-MS. Sons of HFD display impaired choline metabolism, mitochondrial activity, and antioxidant defenses, while grandsons show a shift in testicular omega 3/omega 6 ratio towards a pro-inflammatory environment. Grandsons of HFDt raise 3-hydroxybutyrate levels with possible implications to testicular insulin resistance. Sperm counts decrease in grandsons of HFD-exposed mice, regardless of the duration of exposure. Conclusion HFD-induced "inherited metabolic memory" alters testicular fatty acid metabolism with consequences to sperm parameters up to two generations

    Diet during early life defines testicular lipid content and sperm quality in adulthood

    Get PDF
    Childhood obesity is a serious concern associated with ill health later in life. Emerging data suggest that obesity has long-term adverse effects upon male sexual and reproductive health, but few studies have addressed this issue. We hypothesized that exposure to high-fat diet during early life alters testicular lipid content and metabolism, leading to permanent damage to sperm parameters. After weaning (day 21 after birth), 36 male mice were randomly divided into three groups and fed with a different diet regimen for 200 days: a standard chow diet (CTRL), a high-fat diet (HFD) (carbohydrate: 35.7%, protein: 20.5%, and fat: 36.0%), and a high-fat diet for 60 days, then replaced by standard chow (HFDt). Biometric and metabolic data were monitored. Animals were then euthanized, and tissues were collected. Epididymal sperm parameters and endocrine parameters were evaluated. Testicular metabolites were extracted and characterized by 1H-NMR and GC-MS. Testicular mitochondrial and antioxidant activity were evaluated. Our results show that mice fed with a high-fat diet, even if only until early adulthood, had lower sperm viability and motility, and higher incidence of head and tail defects. Although diet reversion with weight loss during adulthood prevents the progression of metabolic syndrome, testicular content in fatty acids is irreversibly affected. Excessive fat intake promoted an overaccumulation of proinflammatory n-6 polyunsaturated fatty acids in the testis, which is strongly correlated with negative effects upon sperm quality. Therefore, the adoption of high-fat diets during early life correlates with irreversible changes in testicular lipid content and metabolism, which are related to permanent damage to sperm quality later in life

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced
    corecore