16,746 research outputs found

    Comment on "High Field Studies of Superconducting Fluctuations in High-Tc Cuprates. Evidence for a Small Gap distinct from the Large Pseudogap"

    Full text link
    By using high magnetic field data to estimate the background conductivity, Rullier-Albenque and coworkers have recently published [Phys.Rev.B 84, 014522 (2011)] experimental evidence that the in-plane paraconductivity in cuprates is almost independent of doping. In this Comment we also show that, in contrast with their claims, these useful data may be explained at a quantitative level in terms of the Gaussian-Ginzburg-Landau approach for layered superconductors, extended by Carballeira and coworkers to high reduced-temperatures by introducing a total-energy cutoff [Phys.Rev.B 63, 144515 (2001)]. When combined, these two conclusions further suggest that the paraconductivity in cuprates is conventional, i.e., associated with fluctuating superconducting pairs above the mean-field critical temperature.Comment: 9 pages, 1 figur

    Atmospheric turbulence in phase-referenced and wide-field interferometric images: Application to the SKA

    Full text link
    Phase referencing is a standard calibration procedure in radio interferometry. It allows to detect weak sources by using quasi-simultaneous observations of closeby sources acting as calibrators. Therefore, it is assumed that, for each antenna, the optical paths of the signals from both sources are similar. However, atmospheric turbulence may introduce strong differences in the optical paths of the signals and affect, or even waste, phase referencing for cases of relatively large calibrator-to-target separations and/or bad weather. The situation is similar in wide-field observations, since the random deformations of the images, mostly caused by atmospheric turbulence, have essentially the same origin as the random astrometric variations of phase-referenced sources with respect to the phase center of their calibrators. In this paper, we present the results of a Monte Carlo study of the astrometric precision and sensitivity of an interferometric array (a realization of the Square Kilometre Array, SKA) in phase-referenced and wide-field observations. These simulations can be extrapolated to other arrays by applying the corresponding corrections. We consider several effects from the turbulent atmosphere (i.e., ionosphere and wet component of the troposphere) and also from the antenna receivers. We study the changes in dynamic range and astrometric precision as a function of observing frequency, source separation, and strength of the turbulence. We find that, for frequencies between 1 and 10 GHz, it is possible to obtain images with high fidelity, although the atmosphere strongly limits the sensitivity of the instrument compared to the case with no atmosphere. Outside this frequency window, the dynamic range of the images and the accuracy of the source positions decrease. [...] (Incomplete abstract. Please read manuscript.)Comment: 9 pages, 11 figures. Accepted for publication in A&A

    Fine-grained entanglement loss along renormalization group flows

    Get PDF
    We explore entanglement loss along renormalization group trajectories as a basic quantum information property underlying their irreversibility. This analysis is carried out for the quantum Ising chain as a transverse magnetic field is changed. We consider the ground-state entanglement between a large block of spins and the rest of the chain. Entanglement loss is seen to follow from a rigid reordering, satisfying the majorization relation, of the eigenvalues of the reduced density matrix for the spin block. More generally, our results indicate that it may be possible to prove the irreversibility along RG trajectories from the properties of the vacuum only, without need to study the whole hamiltonian.Comment: 5 pages, 3 figures; minor change

    Applying matrix product operators to model systems with long-range interactions

    Get PDF
    An algorithm is presented which computes a translationally invariant matrix product state approximation of the ground state of an infinite 1D system; it does this by embedding sites into an approximation of the infinite ``environment'' of the chain, allowing the sites to relax, and then merging them with the environment in order to refine the approximation. By making use of matrix product operators, our approach is able to directly model any long-range interaction that can be systematically approximated by a series of decaying exponentials. We apply our techniques to compute the ground state of the Haldane-Shastry model and present results.Comment: 7 pages, 3 figures; manuscript has been expanded and restructured in order to improve presentation of the algorith

    First order phase transition in the anisotropic quantum orbital compass model

    Get PDF
    We investigate the anisotropic quantum orbital compass model on an infinite square lattice by means of the infinite projected entangled-pair state algorithm. For varying values of the JxJ_x and JzJ_z coupling constants of the model, we approximate the ground state and evaluate quantities such as its expected energy and local order parameters. We also compute adiabatic time evolutions of the ground state, and show that several ground states with different local properties coexist at Jx=JzJ_x = J_z. All our calculations are fully consistent with a first order quantum phase transition at this point, thus corroborating previous numerical evidence. Our results also suggest that tensor network algorithms are particularly fitted to characterize first order quantum phase transitions.Comment: 4 pages, 3 figures, major revision with new result

    Entanglement renormalization and gauge symmetry

    Get PDF
    A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints, and can be regarded as the low energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low energy, effective descriptions of lattice models with a local symmetry, such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure, and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of the toric code with a magnetic field, equivalent to Z2 lattice gauge theory, for lattices with up to 16 x 16 sites (16^2 x 2 = 512 spins) on a torus. We reproduce the well-known ground state phase diagram of the model, consisting of a deconfined and spin polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground state fidelities, Wilson loops, and several other quantities.Comment: reviewed version as published in PRB; this version includes a new section about the accuracy of the results several corrections and added citation

    Radio detection of the young binary HD 160934

    Get PDF
    Precise determination of dynamical masses of pre-main-sequence (PMS) stars is essential to calibrate stellar evolution models that are widely used to derive theoretical masses of young low-mass objects. Binary stars in young, nearby loose associations are particularly good candidates for this calibration since all members share a common age. Interestingly, some of these young binaries present a persistent and compact radio emission, which makes them excellent targets for astrometric VLBI studies. We aim to monitor the orbital motion of the binary system HD 160934, a member of the AB Doradus moving group. We observed HD 160934 with the Very Large Array and the European VLBI Network at 8.4 and 5 GHz, respectively. The orbital information derived from these observations was analyzed along with previously reported orbital measurements. We show that the two components of the binary, HD 160934 A and HD 160934 c, display compact radio emission at VLBI scales, providing precise information on the relative orbit. Revised orbital elements were estimated. Future VLBI monitoring of this pair should determine precise model-independent mass estimates for the A and c components, which will serve as calibration tests for PMS evolutionary models.Comment: 5 pages, 5 figures, accepted for publication in A&

    rPICARD: A CASA-based Calibration Pipeline for VLBI Data

    Full text link
    Currently, HOPS and AIPS are the primary choices for the time-consuming process of (millimeter) Very Long Baseline Interferometry (VLBI) data calibration. However, for a full end-to-end pipeline, they either lack the ability to perform easily scriptable incremental calibration or do not provide full control over the workflow with the ability to manipulate and edit calibration solutions directly. The Common Astronomy Software Application (CASA) offers all these abilities, together with a secure development future and an intuitive Python interface, which is very attractive for young radio astronomers. Inspired by the recent addition of a global fringe-fitter, the capability to convert FITS-IDI files to measurement sets, and amplitude calibration routines based on ANTAB metadata, we have developed the the CASA-based Radboud PIpeline for the Calibration of high Angular Resolution Data (rPICARD). The pipeline will be able to handle data from multiple arrays: EHT, GMVA, VLBA and the EVN in the first release. Polarization and phase-referencing calibration are supported and a spectral line mode will be added in the future. The large bandwidths of future radio observatories ask for a scalable reduction software. Within CASA, a message passing interface (MPI) implementation is used for parallelization, reducing the total time needed for processing. The most significant gain is obtained for the time-consuming fringe-fitting task where each scan be processed in parallel.Comment: 6 pages, 1 figure, EVN 2018 symposium proceeding

    Multi-wavelength differential astrometry of the S5 polar cap sample

    Full text link
    We report on the status of our S5 polar cap astrometry program. Since 1997 we have observed all the 13 radio sources of the complete S5 polar cap sample at the wavelengths of 3.6 cm, 2 cm and 7 mm. Images of the radio sources at 3.6 and 2 cm have already been published reporting morphological changes. Preliminary astrometric analyses have been carried out at three frequencies with precisions in the relative position determination ranging from 80 to 20 microarcseconds. We report also on the combination of our phase-delay global astrometry results with the microarcsecond-precise optical astrometry that will be provided by future space-based instruments.Comment: 2 pages. 1 figure. Proceedings of the 7th European VLBI Network Symposium held in Toledo, Spain on October 12-15, 2004. Editors: R. Bachiller, F. Colomer, J.-F. Desmurs, P. de Vicente (Observatorio Astronomico Nacional), p. 323-324. Needs evn2004.cl

    Entanglement cost of mixed states

    Full text link
    We compute the entanglement cost of several families of bipartite mixed states, including arbitrary mixtures of two Bell states. This is achieved by developing a technique that allows us to ascertain the additivity of the entanglement of formation for any state supported on specific subspaces. As a side result, the proof of the irreversibility in asymptotic local manipulations of entanglement is extended to two-qubit systems.Comment: 4 pages, no figures, (v4) new results, including a new method to determine E_c for more general mixed states, presentation changed significantl
    • …
    corecore