4 research outputs found

    Detection of Apoptosis in Cancer Cells Using Heat Shock Protein 70 and p53 Antibody Conjugated Quantum Dot Nanoparticles

    Get PDF
    Clinical experience indicates that enhanced level of heat shock protein 70 (Hsp70) and p53 correlates with poor prognosis due to malignant cell overexpression of these proteins in tumor progression. Cadmium selenide quantum dots (QDs) were synthesized in aqueous solution using mercaptopropionic acid and L-cysteine (L-Cys) as ligands. They were conjugated with a monoclonal antibody (Ab) to p53 and cmHp70.1 to Hsp70 for detection of cancer cell apoptosis that was demonstrated in the experiment by fluorescent confocal microscopy both for breast carcinoma cells and for thyroid tissue. It is shown that in comparison with organic dyes, quantum dots have superior photostability of tracking apoptosis in cancer cells for longer time

    The Fabrication of Alginate–Carboxymethyl Cellulose-Based Composites and Drug Release Profiles

    No full text
    Recently, hydrogels based on natural water-soluble polysaccharides have attracted more and more attention due to their favorable characteristics. The high water-holding capacity, lack of toxicity, and biodegradability of such hydrogels make it possible to develop new materials on their basis for biotechnological, biomedical, pharmacological, and medical purposes. Sodium alginate is a non-toxic natural polysaccharide found in marine algae. It is capable of forming solid gels under the action of polyvalent cations that cross-link polysaccharide chains. Alginate-based products are popular in many industries, including food processing, pharmaceutical, and biomedical applications. Cellulose is the most abundant, renewable, and natural polymer on Earth, and it is used for various industrial and biomedical applications. Carboxymethyl cellulose (CMC) is useful in pharmaceutical, food, and non-food industries such as tablets, ice cream, drinks, toothpaste, and detergents. In this review, various methods for the preparation of the compositions based on sodium alginate and CMC using different crosslinking agents have been collected for the first time. Additionally, the drug release profile from such polymer matrixes was analyzed

    A Review on Chitosan and Cellulose Hydrogels for Wound Dressings

    No full text
    Wound management remains a challenging issue around the world, although a lot of wound dressing materials have been produced for the treatment of chronic and acute wounds. Wound healing is a highly dynamic and complex regulatory process that involves four principal integrated phases, including hemostasis, inflammation, proliferation, and remodeling. Chronic non-healing wounds are wounds that heal significantly more slowly, fail to progress to all the phases of the normal wound healing process, and are usually stalled at the inflammatory phase. These wounds cause a lot of challenges to patients, such as severe emotional and physical stress and generate a considerable financial burden on patients and the general public healthcare system. It has been reported that about 1–2% of the global population suffers from chronic non-healing wounds during their lifetime in developed nations. Traditional wound dressings are dry, and therefore cannot provide moist environment for wound healing and do not possess antibacterial properties. Wound dressings that are currently used consist of bandages, films, foams, patches and hydrogels. Currently, hydrogels are gaining much attention as a result of their water-holding capacity, providing a moist wound-healing milieu. Chitosan is a biopolymer that has gained a lot of attention recently in the pharmaceutical industry due to its unique chemical and antibacterial nature. However, with its poor mechanical properties, chitosan is incorporated with other biopolymers, such as the cellulose of desirable biocompatibility, at the same time having the improved mechanical and physical properties of the hydrogels. This review focuses on the study of biopolymers, such as cellulose and chitosan hydrogels, for wound treatment

    Colloidal CdSe and ZnSe/Mn quantum dots: Their cytotoxicity and effects on cell morphology

    Get PDF
    The CdSe and ZnSe:Mn colloidal quantum dots (QDs) have been synthesized in order to use them as a contrast agent for bioimaging. The synthesis of QDs was made in the aqueous solution. These compounds are fluorescent semiconductor nanoparticles and are held to be promising fluorophores which can be used as an important research tool in biology and medicine. They can be exploited to allocate the problematic biological tissues and individual cells. Their applicability to human examination was studied. For this purpose we investigated the morphological changes in the cells by reacting with the CdSe/l-Cys and ZnSe:Mn/MPA quantum dots. The cytotoxicity of CdSe/l-Cys in the line of breast carcinoma was examined using confocal microscopy. The results can be seen as encouraging
    corecore