3 research outputs found

    Problems of Development and Application of Metal Matrix Composite Powders for Additive Technologies

    Get PDF
    The paper considers the problem of structure formation in composites with carbide phase and a metal binder under self-propagating high-temperature synthesis (SHS) of powder mixtures. The relation between metal binder content and their structure and wear resistance of coatings was studied. It has been shown that dispersion of the carbide phase and volume content of metal binder in the composite powders structure could be regulated purposefully for all of studied composites. It was found that the structure of surfaced coating was fully inherited of composite powders. Modification or coarsening of the structure at the expense of recrystallization or coagulation carbide phase during deposition and sputtering does not occur

    Effect of the Hot Deformation Conditions on Structure and Mechanical Properties of AlCr/AlCrSi Powder Composites

    No full text
    Aluminum matrix composites usually contain strengthening particles of refractory compounds (SiC, Al2O3) that do not react with the Al matrix. There is a problem in producing the Al matrix composite with inclusion of metals that can generate intermetallic compounds with aluminum. In this case, a conventional sintering of powder mixtures results in high porosity due to volume growth. That is why some new methods of producing dense Al matrix composites are required. A possibility to create a dense powder Al-based composite containing hard components, such as chromium and silicon, without using the sintering process, is considered. This paper presents study results of structural and mechanical properties of Al-Cr and Al-Cr-Si composites produced by hot compaction of powder mixtures. An analysis of the relationship between mechanical properties and structures of Al-Cr and Al-Cr-Si composites is carried out. Optimal values for thermomechanical processing modes that ensure sufficient strength and plasticity are determined. It is shown that strong bonding of the aluminum particles occurs under hot deformation, and an aluminum matrix is formed that provides acceptable composite bending strength as a result. The presence of chromium and silicon hard inclusions is not a significant obstacle for aluminum plastic flow. Al-Cr and Al-Cr-Si composites produced by hot deformation of the powder mixtures can be used as cathode material for the deposition of wear-resistant nitride coatings on metalworking tools
    corecore