8 research outputs found

    CopulaDTA: An R Package for Copula Based Bivariate Beta-Binomial Models for Diagnostic Test Accuracy Studies in a Bayesian Framework

    Get PDF
    The current statistical procedures implemented in statistical software packages for pooling of diagnostic test accuracy data include hSROC regression and the bivariate random-effects meta-analysis model (BRMA). However, these models do not report the overall mean but rather the mean for a central study with random-effect equal to zero and have difficulties estimating the correlation between sensitivity and specificity when the number of studies in the meta-analysis is small and/or when the between-study variance is relatively large. This tutorial on advanced statistical methods for meta-analysis of diagnostic accuracy studies discusses and demonstrates Bayesian modeling using CopulaDTA package in R to fit different models to obtain the meta-analytic parameter estimates. The focus is on the joint modelling of sensitivity and specificity using copula based bivariate beta distribution. Essentially, we extend the work of Nikoloulopoulos by: i) presenting the Bayesian approach which offers flexibility and ability to perform complex statistical modelling even with small data sets and ii) including covariate information, and iii) providing an easy to use code. The statistical methods are illustrated by re-analysing data of two published meta-analyses. Modelling sensitivity and specificity using the bivariate beta distribution provides marginal as well as study-specific parameter estimates as opposed to using bivariate normal distribution (e.g., in BRMA) which only yields study-specific parameter estimates. Moreover, copula based models offer greater flexibility in modelling different correlation structures in contrast to the normal distribution which allows for only one correlation structure.Comment: 26 pages, 5 figure

    CopulaDTA: An R Package for Copula-Based Bivariate Beta-Binomial Models for Diagnostic Test Accuracy Studies in a Bayesian Framework

    Get PDF
    The current statistical procedures implemented in statistical software packages for pooling of diagnostic test accuracy data include HSROC regression (Rutter and Gatsonis 2001) and the bivariate random-effects meta-analysis model (BRMA; Reitsma et al. 2005; Arends et al. 2008; Chu and Cole 2006; Riley et al. 2007b). However, these models do not report the overall mean but rather the mean for a central study with random-effect equal to zero and have difficulties estimating the correlation between sensitivity and specificity when the number of studies in the meta-analysis is small and/or when the between-study variance is relatively large (Riley et al. 2007a). This tutorial on advanced statistical methods for meta-analysis of diagnostic accuracy studies discusses and demonstrates Bayesian modeling using the R package CopulaDTA (Nyaga 2017) to fit different models to obtain the meta-analytic parameter estimates. The focus is on the joint modeling of sensitivity and specificity using a copula based bivariate beta distribution. Essentially, we extend the work of Nikoloulopoulos (2015) by: (i) presenting the Bayesian approach which offers the flexibility and ability to perform complex statistical modeling even with small data sets and (ii) including covariate information, and (iii) providing an easy to use code. The statistical methods are illustrated by re-analyzing data of two published meta-analyses. Modeling sensitivity and specificity using the bivariate beta distribution provides marginal as well as study-specific parameter estimates as opposed to using the bivariate normal distribution (e.g., in BRMA) which only yields study-specific parameter estimates. Moreover, copula based models offer greater flexibility in modeling different correlation structures in contrast to the normal distribution which allows for only one correlation structure

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa

    Get PDF
    [Figure: see text]

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants
    corecore