6 research outputs found

    Cytoskeleton Markers in the Spinal Cord and Mechanoreceptors of Thick-Toed Geckos after Prolonged Space Flights

    No full text
    Spaceflight may cause hypogravitational motor syndrome (HMS). However, the role of the nervous system in the formation of HMS remains poorly understood. The aim of this study was to estimate the effects of space flights on the cytoskeleton of the neuronal and glial cells in the spinal cord and mechanoreceptors in the toes of thick-toed geckos (Chondrodactylus turneri GRAY, 1864). Thick-toed geckos are able to maintain attachment and natural locomotion in weightlessness. Different types of mechanoreceptors have been described in the toes of geckos. After flight, neurofilament 200 immunoreactivity in mechanoreceptors was lower than in control. In some motor neurons of flight geckos, nonspecific pathomorphological changes were observed, but they were also detected in the control. No signs of gliosis were detected after spaceflight. Cytoskeleton markers adequately reflect changes in the cells of the nervous system. We suggest that geckos’ adhesion is controlled by the nervous system. Our study revealed no significant disturbances in the morphology of the spinal cord after the prolonged space flight, supporting the hypothesis that geckos compensate the alterations, characteristic for other mammals in weightlessness, by tactile stimulation

    Reproduction and the Early Development of Vertebrates in Space: Problems, Results, Opportunities

    No full text
    Humans and animals adapt to space flight conditions. However, the adaptive changes of fully formed organisms differ radically from the responses of vertebrate embryos, foetuses, and larvae to space flight. Development is associated with active cell proliferation and the formation of organs and systems. The instability of these processes is well known. Over 20 years has passed since the last systematic experiments on vertebrate reproduction and development in space flight. At the same time, programs are being prepared for the exploration of Mars and the Moon, which justifies further investigations into space flight’s impact on vertebrate development. This review focuses on various aspects of reproduction and early development of vertebrates in space flights. The results of various experiments on fishes, amphibians, reptiles, birds and mammals are described. The experiments in which our team took part and ontogeny of the vertebrate nervous and special sensory systems are considered in more detail. Possible causes of morphological changes are also discussed. Research on evolutionarily and taxonomically different models can advance the understanding of reproduction in microgravity. Reptiles, in particular, geckos, due to their special features, can be a promising object of space developmental biology

    Reproduction and the Early Development of Vertebrates in Space: Problems, Results, Opportunities

    No full text
    Humans and animals adapt to space flight conditions. However, the adaptive changes of fully formed organisms differ radically from the responses of vertebrate embryos, foetuses, and larvae to space flight. Development is associated with active cell proliferation and the formation of organs and systems. The instability of these processes is well known. Over 20 years has passed since the last systematic experiments on vertebrate reproduction and development in space flight. At the same time, programs are being prepared for the exploration of Mars and the Moon, which justifies further investigations into space flight’s impact on vertebrate development. This review focuses on various aspects of reproduction and early development of vertebrates in space flights. The results of various experiments on fishes, amphibians, reptiles, birds and mammals are described. The experiments in which our team took part and ontogeny of the vertebrate nervous and special sensory systems are considered in more detail. Possible causes of morphological changes are also discussed. Research on evolutionarily and taxonomically different models can advance the understanding of reproduction in microgravity. Reptiles, in particular, geckos, due to their special features, can be a promising object of space developmental biology

    Reptiles in Space Missions: Results and Perspectives

    No full text
    Reptiles are a rare model object for space research. However, some reptile species demonstrate effective adaptation to spaceflight conditions. The main scope of this review is a comparative analysis of reptile experimental exposure in weightlessness, demonstrating the advantages and shortcomings of this model. The description of the known reptile experiments using turtles and geckos in the space and parabolic flight experiments is provided. Behavior, skeletal bones (morphology, histology, and X-ray microtomography), internal organs, and the nervous system (morphology, histology, and immunohistochemistry) are studied in the spaceflight experiments to date, while molecular and physiological results are restricted. Therefore, the results are discussed in the scope of molecular data collected from mammalian (mainly rodents) specimens and cell cultures in the parabolic and orbital flights and simulated microgravity. The published data are compared with the results of the gecko model studies after the 12–44.5-day spaceflights with special reference to the unique peculiarities of the gecko model for the orbital experiments. The complex study of thick-toed geckos after three spaceflights, in which all geckos survived and demonstrated effective adaptation to spaceflight conditions, was performed. However, future investigations are needed to study molecular mechanisms of gecko adaptation in space
    corecore