17 research outputs found

    Abrogation of neutrophil inflammatory pathways and potential reduction of neutrophil-related factors in COVID-19 by intravenous immunoglobulin

    Full text link
    Pathogenesis of lung injury in COVID-19 is not completely understood, leaving gaps in understanding how current treatments modulate the course of COVID-19. Neutrophil numbers and activation state in circulation have been found to correlate with COVID-19 severity, and neutrophil extracellular traps (NETs) have been found in the lung parenchyma of patients with acute respiratory distress syndrome (ARDS) in COVID-19. Targeting the pro-inflammatory functions of neutrophils may diminish lung injury in COVID-19 and ARDS. Neutrophils were isolated from peripheral blood of healthy donors, treated ex vivo with dexamethasone, tocilizumab and intravenous immunoglobulin (IVIG) and NET formation, oxidative burst, and phagocytosis were assessed. Plasma from critically ill COVID-19 patients before and after clinical treatment with IVIG and from healthy donors was assessed for neutrophil activation-related proteins. While dexamethasone and tocilizumab did not affect PMA- and nigericin-induced NET production ex vivo, IVIG induced a dose-dependent abrogation of NET production in both activation models. IVIG also reduced PMA-elicited reactive oxygen species production, but did not alter phagocytosis. COVID-19 patients were found to have elevated levels of cell-free DNA, neutrophil elastase and IL-8 as compared to healthy controls. Levels of both cell-free DNA and neutrophil elastase were lower 5 days after 4 days of daily treatment with IVIG. The lack of impact of dexamethasone or tocilizumab on these neutrophil functions suggests that these therapeutic agents may not act through suppression of neutrophil functions, indicating that the door might still be open for the addition of a neutrophil modulator to the COVID-19 therapeutic repertoire

    Acute and Chronic Changes in Gene Expression After CMV DNAemia in Kidney Transplant Recipients.

    Full text link
    Cytomegalovirus (CMV) viremia continues to cause significant morbidity and mortality in kidney transplant patients with clinical complications including organ rejection and death. Whole blood gene expression dynamics in CMV viremic patients from onset of DNAemia through convalescence has not been well studied to date in humans. To evaluate how CMV infection impacts whole blood leukocyte gene expression over time, we evaluated a matched cohort of 62 kidney transplant recipients with and without CMV DNAemia using blood samples collected at multiple time points during the 12-month period after transplant. While transcriptomic differences were minimal at baseline between DNAemic and non-DNAemic patients, hundreds of genes were differentially expressed at the long-term timepoint, including genes enriching for pathways important for macrophages, interferon, and IL-8 signaling. Amongst patients with CMV DNAemia, the greatest amount of transcriptomic change occurred between baseline and 1-week post-DNAemia, with increase in pathways for interferon signaling and cytotoxic T cell function. Time-course gene set analysis of these differentially expressed genes revealed that most of the enriched pathways had a significant time-trend. While many pathways that were significantly down- or upregulated at 1 week returned to baseline-like levels, we noted that several pathways important in adaptive and innate cell function remained upregulated at the long-term timepoint after resolution of CMV DNAemia. Differential expression analysis and time-course gene set analysis revealed the dynamics of genes and pathways involved in the immune response to CMV DNAemia in kidney transplant patients. Understanding transcriptional changes caused by CMV DNAemia may identify the mechanism behind patient vulnerability to CMV reactivation and increased risk of rejection in transplant recipients and suggest protective strategies to counter the negative immunologic impact of CMV. These findings provide a framework to identify immune correlates for risk assessment and guiding need for extending antiviral prophylaxis

    Pattern Recognition Receptor-reactivity Screening of Liver Transplant Patients

    Full text link
    Objective and backgroundPattern recognition receptors (PRRs) on immune and parenchymal cells can detect danger-associated molecular patterns (DAMPs) released from cells damaged during ischemia-reperfusion injury (IRI), in heart attack or stroke settings, but also as an unavoidable consequence of solid organ transplantation. Despite IRI being a significant clinical problem across all solid organ transplants, there are limited therapeutics and patient-specific diagnostics currently available.MethodsWe screened portal blood samples obtained from 67 human liver transplant recipients both pre- [portal vein (PV) sample] and post-(liver flush; LF) reperfusion for their ability to activate a panel of PRRs, and analyzed this reactivity in relation to biopsy-proven IRI.ResultsPV samples from IRI+ orthotopic liver transplantation (OLT) patients (n = 35) decreased activation of hTLR4- and hTLR9-transfected cells, whereas PV from IRI- patients (n = 32) primarily increased hTLR7 and hNOD2 activation. LF samples from OLT-IRI patients significantly increased activation of hTLR4 and hTLR9 over IRI- LF. In addition, the change from baseline reactivity to hTLR4/9/NOD2 was significantly higher in IRI+ than IRI- OLT patients.ConclusionsThese results demonstrate that TLR4/7/9 and NOD2 are involved in either promoting or attenuating hepatic IRI, and suggest a diagnostic screening of portal blood for reactivity to these PRRs might prove useful for prediction and/or therapeutic intervention in OLT patients before transplantation

    T cell dysfunction and patient age are associated with poor outcomes after mechanical circulatory support device implantation

    Full text link
    Immunologic impairment may contribute to poor outcomes after implantation of mechanical circulatory support device (MCSD), with infection often as a terminal event. The study of immune dysfunction is of special relevance given the growing numbers of older patients with heart disease. The aim of the study was to define which immunologic characteristics are associated with development of adverse clinical outcomes after MCSD implantation. We isolated peripheral blood mononuclear cells (PBMC) from patients pre- and up to 20 days post-MCSD implantation and analyzed them by multiparameter flow cytometry for T cell dysfunction, including terminal differentiation, exhaustion, and senescence. We used MELD-XI and SOFA scores measured at each time point as surrogate markers of clinical outcome. Older patients demonstrated increased frequencies of terminally differentiated T cells as well as NKT cells. Increased frequency of terminally differentiated and immune senescent T cells were associated with worse clinical outcome as measured by MELD-XI and SOFA scores, and with progression to infection and death. In conclusion, our data suggest that T cell dysfunction, independently from age, is associated with poor outcomes after MCSD implantation, providing a potential immunologic mechanism behind patient vulnerability to multiorgan dysfunction and death. This noninvasive approach to PBMC evaluation holds promise for candidate evaluation and patient monitoring

    Differences in Proinflammatory Cytokines and Monocyte Subtypes in Older as Compared With Younger Kidney Transplant Recipients

    Full text link
    Background:The number of elderly patients with end-stage kidney disease requiring kidney transplantation continues to grow. Evaluation of healthy older adults has revealed proinflammatory changes in the immune system, which are posited to contribute to age-associated illnesses via "inflamm-aging." Immunologic dysfunction is also associated with impaired control of infections. Whether these immunologic changes are found in older kidney transplant recipients is not currently known, but may have important implications for risk for adverse clinical outcomes. Methods:Three months after transplant, innate immune phenotype was evaluated by flow cytometry from 60 kidney transplant recipients (22 older [≥60 years] and 38 younger [<60 years old]). Multiplex cytokine testing was used to evaluate plasma cytokine levels. Younger patients were matched to older patients based on transplant type and induction immune suppression. Results:Older kidney transplant recipients demonstrated decreased frequency of intermediate monocytes (CD14++CD16+) compared with younger patients (1.2% vs 3.3%, P = 0.007), and a trend toward increased frequency of proinflammatory classical monocytes (CD14++CD16-) (94.5% vs 92.1%) (P = 0.065). Increased levels of interferon-gamma (IFN-γ) were seen in older patients. Conclusions:In this pilot study of kidney transplant recipients, we identified differences in the innate immune system in older as compared with younger patients, including increased levels of IFN-γ. This suggests that age-associated nonspecific inflammation persists despite immune suppression. The ability to apply noninvasive testing to transplant recipients will provide tools for patient risk stratification and individualization of immune suppression regimens to improve outcomes after transplantation

    Differences in Proinflammatory Cytokines and Monocyte Subtypes in Older as Compared With Younger Kidney Transplant Recipients

    Full text link
    Background. The number of elderly patients with end-stage kidney disease requiring kidney transplantation continues to grow. Evaluation of healthy older adults has revealed proinflammatory changes in the immune system, which are posited to contribute to age-associated illnesses via “inflamm-aging.” Immunologic dysfunction is also associated with impaired control of infections. Whether these immunologic changes are found in older kidney transplant recipients is not currently known, but may have important implications for risk for adverse clinical outcomes. Methods. Three months after transplant, innate immune phenotype was evaluated by flow cytometry from 60 kidney transplant recipients (22 older [≥60 years] and 38 younger [<60 years old]). Multiplex cytokine testing was used to evaluate plasma cytokine levels. Younger patients were matched to older patients based on transplant type and induction immune suppression. Results. Older kidney transplant recipients demonstrated decreased frequency of intermediate monocytes (CD14++CD16+) compared with younger patients (1.2% vs 3.3%, P = 0.007), and a trend toward increased frequency of proinflammatory classical monocytes (CD14++CD16−) (94.5% vs 92.1%) (P = 0.065). Increased levels of interferon-gamma (IFN-γ) were seen in older patients. Conclusions. In this pilot study of kidney transplant recipients, we identified differences in the innate immune system in older as compared with younger patients, including increased levels of IFN-γ. This suggests that age-associated nonspecific inflammation persists despite immune suppression. The ability to apply noninvasive testing to transplant recipients will provide tools for patient risk stratification and individualization of immune suppression regimens to improve outcomes after transplantation

    Association between preoperative peripheral blood mononuclear cell gene expression profiles, early postoperative organ function recovery potential and long-term survival in advanced heart failure patients undergoing mechanical circulatory support.

    Full text link
    Multiorgan dysfunction syndrome contributes to adverse outcomes in advanced heart failure (AdHF) patients after mechanical circulatory support (MCS) implantation and is associated with aberrant leukocyte activity. We tested the hypothesis that preoperative peripheral blood mononuclear cell (PBMC) gene expression profiles (GEP) can predict early postoperative improvement or non-improvement in patients undergoing MCS implantation. We believe this information may be useful in developing prognostic biomarkers.We conducted a study with 29 patients undergoing MCS-surgery in a tertiary academic medical center from 2012 to 2014. PBMC samples were collected one day before surgery (day -1). Clinical data was collected on day -1 and day 8 postoperatively. Patients were classified by Sequential Organ Failure Assessment score and Model of End-stage Liver Disease Except INR score (measured eight days after surgery): Group I = improving (both scores improved from day -1 to day 8, n = 17) and Group II = not improving (either one or both scores did not improve from day -1 to day 8, n = 12). RNA-sequencing was performed on purified mRNA and analyzed using Next Generation Sequencing Strand. Differentially expressed genes (DEGs) were identified by Mann-Whitney test with Benjamini-Hochberg correction. Preoperative DEGs were used to construct a support vector machine algorithm to predict Group I vs. Group II membership.Out of 28 MCS-surgery patients alive 8 days postoperatively, one-year survival was 88% in Group I and 27% in Group II. We identified 28 preoperative DEGs between Group I and II, with an average 93% prediction accuracy. Out of 105 DEGs identified preoperatively between year 1 survivors and non-survivors, 12 genes overlapped with the 28 predictive genes.In AdHF patients following MCS implantation, preoperative PBMC-GEP predicts early changes in organ function scores and correlates with long-term outcomes. Therefore, gene expression lends itself to outcome prediction and warrants further studies in larger longitudinal cohorts
    corecore