2,009 research outputs found
Comment on ``Spin Polarization and Magnetic Circular Dichroism in Photoemission from the 2p Core Level of Ferromagnetic Ni''
Although the Ni_4 cluster includes more information regarding the Ni band
structure with respect to the Anderson impurity model, it also favors very
peculiar ground states which are incompatible with a coherent picture of all
dichroism experiments.Comment: 1 page, RevTeX, 1 epsf figur
Dual embedding of the Lorentz-violating electrodinamics and Batalin-Vilkovisky quantization
Modifications of the electromagnetic Maxwell Lagrangian in four dimensions
have been considered by some authors. One may include an explicit massive term
(Proca) and a topological but not Lorentz-invariant term within certain
observational limits.
We find the dual-corresponding gauge invariant version of this theory by
using the recently suggested gauge embedding method. We enforce this
dualisation procedure by showing that, in many cases, this is actually a
constructive method to find a sort of parent action, which manifestly
establishes duality. We also use the gauge invariant version of this theory to
formulate a Batalin-Vilkovisky quantization and present a detailed discussion
on the excitation spectrum.Comment: 8 page
Chiral Anomaly and CPT invariance in an implicit momentum space regularization framework
This is the second in a series of two contributions in which we set out to
establish a novel momentum space framework to treat field theoretical
infinities in perturbative calculations when parity-violating objects occur.
Since no analytic continuation on the space-time dimension is effected, this
framework can be particularly useful to treat dimension-specific theories.
Moreover arbitrary local terms stemming from the underlying infinities of the
model can be properly parametrized. We (re)analyse the undeterminacy of the
radiatively generated CPT violating Chern-Simons term within an extended
version of and calculate the Adler-Bardeen-Bell-Jackiw triangle anomaly
to show that our framework is consistent and general to handle the subtleties
involved when a radiative corretion is finite.Comment: 16 pages, LaTeX, version to appear in PR
ALMACAL. XI. Over-densities as signposts to proto-clusters? A cautionary tale
It may be unsurprising that the most common approach to finding
proto-clusters is to search for over-densities of galaxies. Upgrades to
submillimetre (submm) interferometers and the advent of the James Webb Space
Telescope will soon offer the opportunity to find more distant candidate
proto-clusters in deep sky surveys without any spectroscopic confirmation. In
this letter, we report the serendipitous discovery of an extremely dense region
centred on the blazar, J0217-0820, at z=0.6 in the ALMACAL sky survey. Its
density is eight times higher than that predicted by blind submm surveys. Among
the seven submm-bright galaxies, three are as bright as conventional
single-dish submm galaxies, with S_870um > 3mJy. The over-density is thus
comparable to the densest known and confirmed proto-cluster cores. However,
their spectra betray a wide range of redshifts. We investigate the likelihood
of line-of-sight projection effects using light cones from cosmological
simulations, finding that the deeper we search, the higher the chance that we
will suffer from such projection effects. The extreme over-density around
J0217-0820 demonstrates the strong cosmic variance we may encounter in the deep
submm surveys. Thus, we should also question the fidelity of galaxy
proto-cluster candidates selected via over-densities of galaxies, where the
negative K correction eases the detection of dusty galaxies along an
extraordinarily extended line of sight.Comment: 7 pages, 5 figures, update with the accepted versio
Lorentz and CPT symmetries in commutative and noncommutative spacetime
We investigate the fermionic sector of a given theory, in which massive and
charged Dirac fermions interact with an Abelian gauge field, including a non
standard contribution that violates both Lorentz and CPT symmetries. We offer
an explicit calculation in which the radiative corrections due to the fermions
seem to generate a Chern-Simons-like effective action. Our results are obtained
under the general guidance of dimensional regularization, and they show that
there is no room for Lorentz and CPT violation in both commutative and
noncommutative spacetime.Comment: RevTex4, 7 pages, to be published in J. Phys.
Rare B decays and Tevatron top-pair asymmetry
The recent Tevatron result on the top quark forward-backward asymmetry, which
deviates from its standard model prediction by 3.4, has prompted many
authors to build new models to account for this anomaly. Among the various
proposals, we find that those mechanisms which produce via - or
-channel can have a strong correlation to the rare B decays. We demonstrate
this link by studying a model with a new charged gauge boson, . In terms of
the current measurements on decays, we conclude that the branching
ratio for is affected most by the new effects.
Furthermore, using the world average branching ratio for the exclusive B decays
at level, we discuss the allowed values for the new parameters.
Finally, we point out that the influence of the new physics effects on the
direct CP asymmetry in B decays is insignificant.Comment: 15 page, 6 figures, typos corrected and references added, final
version to appear journa
Low-Energy Probes of a Warped Extra Dimension
We investigate a natural realization of a light Abelian hidden sector in an
extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we
consider a second warped space containing a bulk U(1)_x gauge theory with a
characteristic IR scale of order a GeV. This Abelian hidden sector can couple
to the standard model via gauge kinetic mixing on a common UV brane. We show
that if such a coupling induces significant mixing between the lightest U(1)_x
gauge mode and the standard model photon and Z, it can also induce significant
mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be
possible to probe several KK modes in upcoming fixed-target experiments and
meson factories, thereby offering a new way to investigate the structure of an
extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as
journal versio
Reprogramming human T cell function and specificity with non-viral genome targeting.
Decades of work have aimed to genetically reprogram T cells for therapeutic purposes1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites3,4. The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair5,6. Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells
SERPINB3 (SCCA1) inhibits cathepsin L and lysoptosis, protecting cervical cancer cells from chemoradiation
The endogenous lysosomal cysteine protease inhibitor SERPINB3 (squamous cell carcinoma antigen 1, SCCA1) is elevated in patients with cervical cancer and other malignancies. High serum SERPINB3 is prognostic for recurrence and death following chemoradiation therapy. Cervical cancer cells genetically lacking SERPINB3 are more sensitive to ionizing radiation (IR), suggesting this protease inhibitor plays a role in therapeutic response. Here we demonstrate that SERPINB3-deficient cells have enhanced sensitivity to IR-induced cell death. Knock out of SERPINB3 sensitizes cells to a greater extent than cisplatin, the current standard of care. IR in SERPINB3 deficient cervical carcinoma cells induces predominantly necrotic cell death, with biochemical and cellular features of lysoptosis. Rescue with wild-type SERPINB3 or a reactive site loop mutant indicates that protease inhibitory activity is required to protect cervical tumor cells from radiation-induced death. Transcriptomics analysis of primary cervix tumor samples and genetic knock out demonstrates a role for the lysosomal protease cathepsin L in radiation-induced cell death in SERPINB3 knock-out cells. These data support targeting of SERPINB3 and lysoptosis to treat radioresistant cervical cancers
- âŠ