20 research outputs found
Finding large average submatrices in high dimensional data
The search for sample-variable associations is an important problem in the
exploratory analysis of high dimensional data. Biclustering methods search for
sample-variable associations in the form of distinguished submatrices of the
data matrix. (The rows and columns of a submatrix need not be contiguous.) In
this paper we propose and evaluate a statistically motivated biclustering
procedure (LAS) that finds large average submatrices within a given real-valued
data matrix. The procedure operates in an iterative-residual fashion, and is
driven by a Bonferroni-based significance score that effectively trades off
between submatrix size and average value. We examine the performance and
potential utility of LAS, and compare it with a number of existing methods,
through an extensive three-part validation study using two gene expression
datasets. The validation study examines quantitative properties of biclusters,
biological and clinical assessments using auxiliary information, and
classification of disease subtypes using bicluster membership. In addition, we
carry out a simulation study to assess the effectiveness and noise sensitivity
of the LAS search procedure. These results suggest that LAS is an effective
exploratory tool for the discovery of biologically relevant structures in high
dimensional data. Software is available at https://genome.unc.edu/las/.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS239 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
EGFR associated expression profiles vary with breast tumor subtype
<p>Abstract</p> <p>Background</p> <p>The epidermal growth factor receptor (EGFR/HER1) and its downstream signaling events are important for regulating cell growth and behavior in many epithelial tumors types. In breast cancer, the role of EGFR is complex and appears to vary relative to important clinical features including estrogen receptor (ER) status. To investigate EGFR-signaling using a genomics approach, several breast basal-like and luminal epithelial cell lines were examined for sensitivity to EGFR inhibitors. An EGFR-associated gene expression signature was identified in the basal-like SUM102 cell line and was used to classify a diverse set of sporadic breast tumors.</p> <p>Results</p> <p><it>In vitro</it>, breast basal-like cell lines were more sensitive to EGFR inhibitors compared to luminal cell lines. The basal-like tumor derived lines were also the most sensitive to carboplatin, which acted synergistically with cetuximab. An EGFR-associated signature was developed <it>in vitro</it>, evaluated on 241 primary breast tumors; three distinct clusters of genes were evident <it>in vivo</it>, two of which were predictive of poor patient outcomes. These EGFR-associated poor prognostic signatures were highly expressed in almost all basal-like tumors and many of the HER2+/ER- and Luminal B tumors.</p> <p>Conclusion</p> <p>These results suggest that breast basal-like cell lines are sensitive to EGFR inhibitors and carboplatin, and this combination may also be synergistic. <it>In vivo</it>, the EGFR-signatures were of prognostic value, were associated with tumor subtype, and were uniquely associated with the high expression of distinct EGFR-RAS-MEK pathway genes.</p
Department of Pathology, Thomas Jefferson University, Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors.
BACKGROUND: Although numerous mouse models of breast carcinomas have been developed, we do not know the extent to which any faithfully represent clinically significant human phenotypes. To address this need, we characterized mammary tumor gene expression profiles from 13 different murine models using DNA microarrays and compared the resulting data to those from human breast tumors. RESULTS: Unsupervised hierarchical clustering analysis showed that six models (TgWAP-Myc, TgMMTV-Neu, TgMMTV-PyMT, TgWAP-Int3, TgWAP-Tag, and TgC3(1)-Tag) yielded tumors with distinctive and homogeneous expression patterns within each strain. However, in each of four other models (TgWAP-T121, TgMMTV-Wnt1, Brca1Co/Co;TgMMTV-Cre;p53+/- and DMBA-induced), tumors with a variety of histologies and expression profiles developed. In many models, similarities to human breast tumors were recognized, including proliferation and human breast tumor subtype signatures. Significantly, tumors of several models displayed characteristics of human basal-like breast tumors, including two models with induced Brca1 deficiencies. Tumors of other murine models shared features and trended towards significance of gene enrichment with human luminal tumors; however, these murine tumors lacked expression of estrogen receptor (ER) and ER-regulated genes. TgMMTV-Neu tumors did not have a significant gene overlap with the human HER2+/ER- subtype and were more similar to human luminal tumors. CONCLUSION: Many of the defining characteristics of human subtypes were conserved among the mouse models. Although no single mouse model recapitulated all the expression features of a given human subtype, these shared expression features provide a common framework for an improved integration of murine mammary tumor models with human breast tumors
Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors
Comparison of mammary tumor gene-expression profiles from thirteen murine models using microarrays and with that of human breast tumors showed that many of the defining characteristics of human subtypes were conserved among mouse models
Basal-like Breast cancer DNA copy number losses identify genes involved in genomic instability, response to therapy, and patient survival
Breast cancer is a heterogeneous disease with known expression-defined tumor subtypes. DNA copy number studies have suggested that tumors within gene expression subtypes share similar DNA Copy number aberrations (CNA) and that CNA can be used to further sub-divide expression classes. To gain further insights into the etiologies of the intrinsic subtypes, we classified tumors according to gene expression subtype and next identified subtype-associated CNA using a novel method called SWITCHdna, using a training set of 180 tumors and a validation set of 359 tumors. Fisherās exact tests, Chi-square approximations, and Wilcoxon rank-sum tests were performed to evaluate differences in CNA by subtype. To assess the functional significance of loss of a specific chromosomal region, individual genes were knocked down by shRNA and drug sensitivity, and DNA repair foci assays performed. Most tumor subtypes exhibited specific CNA. The Basal-like subtype was the most distinct with common losses of the regions containing RB1, BRCA1, INPP4B, and the greatest overall genomic instability. One Basal-like subtype-associated CNA was loss of 5q11ā35, which contains at least three genes important for BRCA1-dependent DNA repair (RAD17, RAD50, and RAP80); these genes were predominantly lost as a pair, or all three simultaneously. Loss of two or three of these genes was associated with significantly increased genomic instability and poor patient survival. RNAi knockdown of RAD17, or RAD17/RAD50, in immortalized human mammary epithelial cell lines caused increased sensitivity to a PARP inhibitor and carboplatin, and inhibited BRCA1 foci formation in response to DNA damage. These data suggest a possible genetic cause for genomic instability in Basal-like breast cancers and a biological rationale for the use of DNA repair inhibitor related therapeutics in this breast cancer subtype.Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-011-1846-y) contains supplementary material, which is available to authorized users
HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice.
Members of the hypoxia-inducible factor (HIF) family of transcription factors regulate the cellular response to hypoxia. In non-small cell lung cancer (NSCLC), high HIF2alpha levels correlate with decreased overall survival, and inhibition of either the protein encoded by the canonical HIF target gene VEGF or VEGFR2 improves clinical outcomes. However, whether HIF2alpha is causal in imparting this poor prognosis is unknown. Here, we generated mice that conditionally express both a nondegradable variant of HIF2alpha and a mutant form of Kras (KrasG12D) that induces lung tumors. Mice expressing both Hif2a and KrasG12D in the lungs developed larger tumors and had an increased tumor burden and decreased survival compared with mice expressing only KrasG12D. Additionally, tumors expressing both KrasG12D and Hif2a were more invasive, demonstrated features of epithelial- mesenchymal transition (EMT), and exhibited increased angiogenesis associated with mobilization of circulating endothelial progenitor cells. These results implicate HIF2alpha causally in the pathogenesis of lung cancer in mice, demonstrate in vivo that HIF2alpha can promote expression of markers of EMT, and define HIF2alpha as a promoter of tumor growth and progression in a solid tumor other than renal cell carcinoma. They further suggest a possible causal relationship between HIF2alpha and prognosis in patients with NSCLC
Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics
Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptorāpositive cancers (34.5%; P = 0.32), 17 of 75 HER-2āpositive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a ātumorigenicā signature defined using CD44+/CD24ā breast tumorāinitiating stem cellālike cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cellālike features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets
Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics
Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptorāpositive cancers (34.5%; P = 0.32), 17 of 75 HER-2āpositive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P less than 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a ātumorigenicā signature defined using CD44+/CD24ā breast tumorāinitiating stem cellālike cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cellālike features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets. [Cancer Res 2009;69(10):4116ā24
Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine
<p>Abstract</p> <p>Background</p> <p>Globally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries.</p> <p>Methods</p> <p>Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers.</p> <p>Results</p> <p>Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways.</p> <p>Conclusions</p> <p>The data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.</p