6 research outputs found
Experimental Investigation of an Optical Resonator Gyroscope with a Mach–Zehnder Modulator and Its Sensitive Elements
Today, the task of developing microoptical gyroscopes is topical. Usually, tunable lasers with a built-in frequency stabilization system are used in such gyroscopes. They are comparatively bulky, which hinders the real miniaturization of optical gyroscopes. We propose a new approach implemented by using a Mach–Zehnder modulator with a passive ring resonator connected to one of its arms. This makes it possible to obtain a mutual configuration and makes the use of a tunable laser optional. Two ring resonators made of the polarization-maintaining fiber, suitable for use as sensitive elements of a gyroscope, were realized and investigated. Their Q-factor is equal to 14.5 × 106 and 28.9 × 106. The maximum sensitivity of the proposed method when using the described resonators is 3.2 and 1.8 °/h, respectively. The first experimental setup of a resonator gyroscope implementing this approach has been manufactured and analyzed. When measuring the rotation speed by the quasi-harmonic signal span and its phase, the measurement accuracy was approximately 11 and 0.4 °/s, respectively
A Prototype for a Passive Resonant Interferometric Fiber Optic Gyroscope with a 3 × 3 Directional Coupler
Reducing the dimensions of optical gyroscopes is a crucial task and resonant fiber optic gyroscopes are promising candidates for its solution. The paper presents a prototype of a miniature resonant interferometric gyroscope of a strategic accuracy class. Due to the use of passive optical elements in this gyroscope, it has a great potential for miniaturization, alongside a low production cost and ease of implementation, since it does not require many feedback loops. The presented prototype shows results on a zero instability of 20°/h and an angle random walk of 0.16°/√h. A theoretical model explaining the nature of the multipath interference of resonant spectra and establishing the relationship between the resonator parameters and the output parameters of the presented prototype is proposed. The results predicted are in agreement with the experimental data. The prototype gyroscope demonstrates a scale factor instability and a change in the average signal level, which is due to the presence of polarization non-reciprocity, occurring due to the induced birefringence in the single-mode fiber of the contour. This problem requires further investigation to be performed
A Prototype for a Passive Resonant Interferometric Fiber Optic Gyroscope with a 3 × 3 Directional Coupler
Reducing the dimensions of optical gyroscopes is a crucial task and resonant fiber optic gyroscopes are promising candidates for its solution. The paper presents a prototype of a miniature resonant interferometric gyroscope of a strategic accuracy class. Due to the use of passive optical elements in this gyroscope, it has a great potential for miniaturization, alongside a low production cost and ease of implementation, since it does not require many feedback loops. The presented prototype shows results on a zero instability of 20°/h and an angle random walk of 0.16°/√h. A theoretical model explaining the nature of the multipath interference of resonant spectra and establishing the relationship between the resonator parameters and the output parameters of the presented prototype is proposed. The results predicted are in agreement with the experimental data. The prototype gyroscope demonstrates a scale factor instability and a change in the average signal level, which is due to the presence of polarization non-reciprocity, occurring due to the induced birefringence in the single-mode fiber of the contour. This problem requires further investigation to be performed