136 research outputs found

    Hydroclimate variability from western Iberia (Portugal) during the Holocene: insights from a composite stalagmite isotope record

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Thatcher, D. L., Wanamaker, A. D., Denniston, R. F., Asmerom, Y., Polyak, V. J., Fullick, D., Ummenhofer, C. C., Gillikin, D. P., & Haws, J. A. Hydroclimate variability from western Iberia (Portugal) during the Holocene: insights from a composite stalagmite isotope record. Holocene, (2020): 095968362090864, doi:10.1177/0959683620908648.Iberia is predicted under future warming scenarios to be increasingly impacted by drought. While it is known that this region has experienced multiple intervals of enhanced aridity over the Holocene, additional hydroclimate-sensitive records from Iberia are necessary to place current and future drying into a broader perspective. Toward that end, we present a multi-proxy composite record from six well-dated and overlapping speleothems from Buraca Gloriosa (BG) cave, located in western Portugal. The coherence between the six stalagmites in this composite stalagmite record illustrates that climate (not in-cave processes) impacts speleothem isotopic values. This record provides the first high-resolution, precisely dated, terrestrial record of Holocene hydroclimate from west-central Iberia. The BG record reveals that aridity in western Portugal increased secularly from 9.0 ka BP to present, as evidenced by rising values of both carbon (δ13C) and oxygen (δ18O) stable isotope values. This trend tracks the decrease in Northern Hemisphere summer insolation and parallels Iberian margin sea surface temperatures (SST). The increased aridity over the Holocene is consistent with changes in Hadley Circulation and a southward migration of the Intertropical Convergence Zone (ITCZ). Centennial-scale shifts in hydroclimate are coincident with changes in total solar irradiance (TSI) after 4 ka BP. Several major drying events are evident, the most prominent of which was centered around 4.2 ka BP, a feature also noted in other Iberian climate records and coinciding with well-documented regional cultural shifts. Substantially, wetter conditions occurred from 0.8 ka BP to 0.15 ka BP, including much of the ‘Little Ice Age’. This was followed by increasing aridity toward present day. This composite stalagmite proxy record complements oceanic records from coastal Iberia, lacustrine records from inland Iberia, and speleothem records from both northern and southern Spain and depicts the spatial and temporal variability in hydroclimate in Iberia.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported, in part, by the US National Science Foundation (Grants: #1804528 to ADW; #1804635 to RD; #1804132 to CCU; #1806025 to YA and VP; #1805163 to DPG; BCS-0455145, BCS-0612923, and BCS-1118155 to JAH)

    Decoupling of monsoon activity across the northern and southern Indo-Pacific during the Late Glacial

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 176 (2017): 101-105, doi:10.1016/j.quascirev.2017.09.014.Recent studies of stalagmites from the Southern Hemisphere tropics of Indonesia revealed two shifts in monsoon activity not apparent in records from the Northern Hemisphere sectors of the Austral-Asian monsoon system: an interval of enhanced rainfall at ~19 ka, immediately prior to Heinrich Stadial 1, and a sharp increase in precipitation at ~9 ka. Determining whether these events are site-specific or regional is important for understanding the full range of sensitivities of the Austral-Asian monsoon. We present a discontinuous 40 kyr carbon isotope record of stalagmites from two caves in the Kimberley region of the north-central Australian tropics. Heinrich stadials are represented by pronounced negative carbon isotopic anomalies, indicative of enhanced rainfall associated with a southward shift of the intertropical convergence zone and consistent with hydroclimatic changes observed across Asia and the Indo- Pacific. Between 20-8 ka, however, the Kimberley stalagmites, like the Indonesian record, reveal decoupling of monsoon behavior from Southeast Asia, including the early deglacial wet period (which we term the Late Glacial Pluvial) and the abrupt strengthening of early Holocene monsoon rainfall.Funded by grants from the U.S. National Science Foundation Paleo Perspectives on Climate Change program (AGS-1103413 and AGS-1502917 to RFD) and AGS-1602455 (to CCU and RFD), the Center for Global and Regional Environmental Research, and Cornell College (to RFD). CCU acknowledges support from The Investment in Science Fund given primarily by WHOI Trustee and Corporation Members. Support also received from the Kimberley Foundation Australia

    Reply to Nott: Assessing biases in speleothem records of flood events

    Get PDF
    This article is published as Denniston, Rhawn F., Gabriele Villarini, Angelique N. Gonzales, Victor J. Polyak, Caroline C. Ummenhofer, Matthew S. Lachniet, Alan D. Wanamaker Jr, William F. Humphreys, David Woods, and John Cugley. "Reply to Nott: Assessing biases in speleothem records of flood events." Proceedings of the National Academy of Sciences of the United States of America 112, no. 34 (2015): E4637. doi: 10.1073/pnas.1513354112. Posted with permission.</p

    Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia

    Get PDF
    Assessing temporal variability in extreme rainfall events before the historical era is complicated by the sparsity of long-term “direct” storm proxies. Here we present a 2,200-y-long, accurate, and precisely dated record of cave flooding events from the northwest Australian tropics that we interpret, based on an integrated analysis of meteorological data and sediment layers within stalagmites, as representing a proxy for extreme rainfall events derived primarily from tropical cyclones (TCs) and secondarily from the regional summer monsoon. This time series reveals substantial multicentennial variability in extreme rainfall, with elevated occurrence rates characterizing the twentieth century, 850–1450 CE (Common Era), and 50–400 CE; reduced activity marks 1450–1650 CE and 500–850 CE. These trends are similar to reconstructed numbers of TCs in the North Atlantic and Caribbean basins, and they form temporal and spatial patterns best explained by secular changes in the dominant mode of the El Niño/Southern Oscillation (ENSO), the primary driver of modern TC variability. We thus attribute long-term shifts in cyclogenesis in both the central Australian and North Atlantic sectors over the past two millennia to entrenched El Niño or La Niña states of the tropical Pacific. The influence of ENSO on monsoon precipitation in this region of northwest Australia is muted, but ENSO-driven changes to the monsoon may have complemented changes to TC activity

    Exceptionally stable pre-industrial sea level inferred from the western Mediterranean Sea

    Get PDF
    An accurate record of pre-industrial (pre-1900 CE) sea level is necessary to place modern global mean sea-level rise in context with respect to natural variability. We present new results from precisely dated phreatic overgrowths on speleothems (POS) that preserve a detailed history of Late Holocene sea level. These data indicate that the largest sea-level jump occurred between 0.12 and 0.31 m (95% confidence) from 3.26 to 2.84 ka BP (2σ). Our results show that relative sea level stayed within 0.08 m (95% confidence) of pre-industrial levels from 2.84 ka BP to 1900 CE. This sea-level history is consistent with models of glacial isostatic adjustment that adopt a relatively weak upper mantle viscosity of ~1020 Pa s. Models indicate virtual certainty (> 0.999 probability) that rates of sea-level rise over the past 4 ka (including the 400-year jump) have not approached the global average since 1900 CE; therefore, recent sea-level rise cannot be explained by natural variability

    Sensitivity of northwest Australian tropical cyclone activity to ITCZ migration since 500 CE

    Get PDF
    Tropical cyclones (TCs) regularly form in association with the intertropical convergence zone (ITCZ), and thus, its positioning has implications for global TC activity. While the poleward extent of the ITCZ has varied markedly over past centuries, the sensitivity with which TCs responded remains poorly understood from the proxy record, particularly in the Southern Hemisphere. Here, we present a high-resolution, composite stalagmite record of ITCZ migrations over tropical Australia for the past 1500 years. When integrated with a TC reconstruction from the Australian subtropics, this time series, along with downscaled climate model simulations, provides an unprecedented examination of the dependence of subtropical TC activity on meridional shifts in the ITCZ. TCs tracked the ITCZ at multidecadal to centennial scales, with a more southward position enhancing TC-derived rainfall in the subtropics. TCs may play an increasingly important role in Western Australia’s moisture budgets as subtropical aridity increases due to anthropogenic warming

    Novel long-chain neurotoxins from Bungarus candidus distinguish the two binding sites in muscle-type nicotinic acetylcholine receptors

    Get PDF
    αδ-Bungarotoxins, a novel group of long-chain α-neurotoxins, manifest different affinity to two agonist/competitive antagonist binding sites of muscle-type nicotinic acetylcholine receptors (nAChRs), being more active at the interface of α–δ subunits. Three isoforms (αδ-BgTx-1–3) were identified in Malayan Krait (Bungarus candidus) from Thailand by genomic DNA analysis; two of them (αδ-BgTx-1 and 2) were isolated from its venom. The toxins comprise 73 amino acid residues and 5 disulfide bridges, being homologous to α-bungarotoxin (α-BgTx), a classical blocker of muscle-type and neuronal α7, α8, and α9α10 nAChRs. The toxicity of αδ-BgTx-1 (LD50 = 0.17–0.28 µg/g mouse, i.p. injection) is essentially as high as that of α-BgTx. In the chick biventer cervicis nerve–muscle preparation, αδ-BgTx-1 completely abolished acetylcholine response, but in contrast with the block by α-BgTx, acetylcholine response was fully reversible by washing. αδ-BgTxs, similar to α-BgTx, bind with high affinity to α7 and muscle-type nAChRs. However, the major difference of αδ-BgTxs from α-BgTx and other naturally occurring α-neurotoxins is that αδ-BgTxs discriminate the two binding sites in the Torpedo californica and mouse muscle nAChRs showing up to two orders of magnitude higher affinity for the α–δ site as compared with α–ε or α–γ binding site interfaces. Molecular modeling and analysis of the literature provided possible explanations for these differences in binding mode; one of the probable reasons being the lower content of positively charged residues in αδ-BgTxs. Thus, αδ-BgTxs are new tools for studies on nAChRs
    corecore