2 research outputs found

    Computer-aided analysis of quercetin mechanism of overcoming docetaxel resistance in docetaxel-resistant prostate cancer

    No full text
    Abstract Background Prostate cancer (PC) is a silent but potent killer among men. In 2018, PC accounted for more than 350, 000 death cases while more than 1.2 million cases were diagnosed. Docetaxel, a chemotherapeutic drug belonging to the taxane family of drugs, is one of the most potent drugs in combating advanced PC. However, PC cells often evolve resistance against the regimen. Hence, necessitating the search for complementary and alternative therapies. Quercetin, a ubiquitous phytocompound with numerous pharmacological properties, has been reported to reverse docetaxel resistance (DR) in docetaxel-resistant prostate cancer (DRPC). Therefore, this study aimed to explore the mechanism via which quercetin reverses DR in DRPC using an integrative functional network and exploratory cancer genomic data analyses. Results The putative targets of quercetin were retrieved from relevant databases, while the differentially expressed genes (DEGs) in docetaxel-resistant prostate cancer (DRPC) were identified by analysing microarray data retrieved from the Gene Expression Omnibus (GEO) database. Subsequently, the protein-protein interaction (PPI) network of the overlapping genes between the DEGs and quercetin targets was retrieved from STRING, while the hub genes, which represent the key interacting genes of the network, were identified using the CytoHubba plug-in of Cytoscape. The hub genes were further subjected to a comprehensive analysis aimed at identifying their contribution to the immune microenvironment and overall survival (OS) of PC patients, while their alterations in PC patients were also revealed. The biological roles played by the hub genes in chemotherapeutic resistance include the positive regulation of developmental process, positive regulation of gene expression, negative regulation of cell death, and epithelial cell differentiation among others. Conclusion Further analysis revealed epidermal growth factor receptor (EGFR) as the most pertinent target of quercetin in reversing DR in DRPC, while molecular docking simulation revealed an effective interaction between quercetin and EGFR. Ultimately, this study provides a scientific rationale for the further exploration of quercetin as a combinational therapy with docetaxel

    Immunoinformatics Studies and Design of a Potential Multi-Epitope Peptide Vaccine to Combat the Fatal Visceral Leishmaniasis

    No full text
    Leishmaniasis is a neglected tropical disease caused by parasitic intracellular protozoa of the genus Leishmania. The visceral form of this disease caused by Leishmania donovani continues to constitute a major public health crisis, especially in countries of endemicity. In some cases, it is asymptomatic and comes with acute and chronic clinical outcomes such as weight loss, pancytopenia, hepatosplenomegaly, and death if left untreated. Over the years, the treatment of VL has relied solely on chemotherapeutic agents, but unfortunately, these drugs are now faced with challenges. Despite all efforts, no successful vaccine has been approved for VL. This could be as a result of limited knowledge/understanding of the immune mechanisms necessary to regulate parasite growth. Using a computational approach, this study explored the prospect of harnessing the properties of a disulfide isomerase protein of L. donovani amastigotses to develop a multi-epitope subunit vaccine candidate against the parasite. We designed a 248-amino acid multi-epitope vaccine with a predicted antigenicity probability of 0.897372. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was stable, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against Leishmania spp. Parasites
    corecore