7 research outputs found

    Device Simulation of Sb2S3 Solar Cells by SCAPS-1D Software

    Get PDF
    Antimony sulphide (Sb2S3) has drawn research interest due to its promising properties for photovoltaic applications. The progress in developing highly efficient Sb2S3 solar cells has stimulated this study to a great extent. In this paper, we present the results of a simulation of solar cell processing parameters on the performance of the solar cell through theoretical analysis and device simulation using SCAPS software. The results of this simulation show that the solar cell performance can be enhanced to a great extent by adjusting the thickness, doping concentration and defect density of both the TiO2 buffer layer and Sb2S3 absorber layer and also the electron affinity of the TiO2 buffer layer. Optimized parameters were found to be: doping concentration of (1.0 X 1017CM3 for TiO2 and 3.0 X 1016 CM3 for Sb2S3), defect density of the Sb2S3 absorber at (1.0 X 1015.....3) and the electron affinity of the buffer layer at (4.26 eV). The results obtained were as follows: Voc of 750 mV, Jsc of 15.23 mA/cm2, FF of 73.55% and efficiency of 8.41%. These results show that Sb2S3 is a potential earth-abundant compound that can yield highly efficient solar cells

    Numerical study of copper antimony sulphide (CuSbS2) solar cell by SCAPS-1D

    No full text
    Copper antimony sulphide thin films are promising, less toxic, and more absorbent material in the world, and they would be good to be applied in photovoltaic energy production. To better operations of copper antimony sulphide (CuSbS2) photovoltaic cells, this paper uses a solar cell capacitance simulator (SCAPS-1D) to simulate and analyze photovoltaic properties. This article examines different thicknesses of fluorine-doped tin oxide (FTO), cadmium sulphide (CdS), carbon (C), and CuSbS2, as well as the defect and dopant concentration in the CuSbS2 photoactive layer of the photovoltaic cell structure glass/FTO/n-CdS/p-CuSbS2/C/Au. Optimum thicknesses of CuSbS2 is 300 nm, carbon hole transport layer (HTL) is 50 nm, and for n-CdS electron transport layer (ETL) is 100 nm, giving open circuit Voltage (Voc) of 0.9389 V, short circuit current density (Jsc) of 28.32 mA/cm2, fill factor (FF) of 60.8% and solar cell efficiency of 16.17%. The increase in defects causes a decrease of carrier lifetime resulting in to decrease in diffusion length and the optimum absorber layer doping concentration was found to be 1018 cm−3

    Thickness Dependence of Window Layer on CH3NH3PbI3-XClX Perovskite Solar Cell

    No full text
    CH3NH3PbI3-xClx has been studied experimentally and has shown promising results for photovoltaic application. To enhance its performance, this study investigated the effect of varying thickness of FTO, TiO2, and CH3NH3PbI3-xClx for a perovskite solar cell with the structure glass/FTO/TiO2/CH3NH3PbI3-xClx/Spiro-OMeTAD/Ag studied using SCAPS-1D simulator software. The output parameters obtained from the literature for the device were 26.11 mA/cm2, 1.25 V, 69.89%, and 22.72% for Jsc, Voc, FF, and η, respectively. The optimized solar cell had a thickness of 100 nm, 50 nm, and 300 nm for FTO, TiO2, and CH3NH3PbI3-xClx layers, respectively, and the device output were 25.79 mA/cm2, 1.45 V, 78.87%, and 29.56% for Jsc, Voc, FF, and η, respectively, showing a remarkable increase in FF by 8.98% and 6.84% for solar cell efficiency. These results show the potential of fabricating an improved CH3NH3PbI3-xClx perovskite solar cell

    Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate) (PMMA)

    No full text
    Studies have shown that perovskites have a high potential of outdoing silicon based solar cells in terms of solar energy conversion, but their rate of degradation is also high. This study reports on improvement on the stability of CH3NH3PbI3 by passivating it with polymethylmethacrylate (PMMA). Structural and electronic properties of CH3NH3PbI3 stabilized by polymethylmethacrylate (PMMA) were investigated by varying concentrations of PMMA in the polymer solutions. Stability tests were performed over a period of time using modulated surface photovoltage (SPV) spectroscopy, X-ray diffraction (XRD), and photoluminescence (PL) measurements. The XRD patterns confirm the tetragonal structure of the deposited CH3NH3PbI3 for every concentration of PMMA. Furthermore, CH3NH3PbI3 coated with 40 mg/mL of PMMA did not show any impurity phase even after storage in air for 43 days. The Tauc gap (ETauc) determined on the basis of the in-phase SPV spectra was found in the range from 1.585 to 1.62 eV for the samples stored during initial days, but shifted towards lower energies as the storage time increased. This can be proposed to be due to different chemical reactions between CH3NH3PbI3/PMMA interfaces and air. PL intensity increased with increasing concentration of PMMA except for the perovskite coated with 40 mg/mL of PMMA. PL quenching in the perovskite coated with 40 mg/mL of PMMA can be interpreted as fast electron transfer towards the substrate in the sample. This study shows that, with an optimum concentration of PMMA coating on CH3NH3PbI3, the lifetime and hence stability on electrical and structural behavior of CH3NH3PbI3 is improved

    Mechanical Properties of Al–Mg–Si Alloys (6xxx Series): A DFT-Based Study

    No full text
    Al–Mg–Si alloys are used in aircraft, train, and car manufacturing industries due to their advantages, which include non-corrosivity, low density, relatively low cost, high thermal and electrical conductivity, formability, and weldability. This study investigates the bulk mechanical properties of Al–Mg–Si alloys and the influence of the Si/Mg ratio on these properties. The Al cell was used as the starting structure, and then nine structures were modeled with varying percentages of aluminium, magnesium, and silicon. Elastic constant calculations were conducted using the stress–strain method as implemented in the quantum espresso code. This study found that the optimum properties obtained were a density of 2.762 g/cm3, a bulk modulus of 83.3 GPa, a shear modulus of 34.4 GPa, a Vickers hardness of 2.79 GPa, a Poisson’s ratio of 0.413, a Pugh’s ratio of 5.42, and a yield strength of 8.38 GPa. The optimum Si/Mg ratio was found to be 4.5 for most of the mechanical properties. The study successfully established that the Si/Mg ratio is a critical factor when dealing with the mechanical properties of the Al–Mg–Si alloys. The alloys with the optimum Si/Mg ratio can be used for industrial applications such as plane skins and mining equipment where these properties are required
    corecore