4 research outputs found

    The vapour phase hydrogenation of cinnamaldehyde using cobalt supported inside and outside hollow carbon spheres

    No full text
    The hydrogenation of cinnamaldehyde is usually performed in the liquid phase in batch mode. In this study, a vapour phase flow system has been used to evaluate the use of cobalt catalysts supported inside and outside hollow carbon spheres (HCSs). The influence of temperature, hydrogen flow rate and catalyst mass on the hydrogenation reaction was investigated. The catalysts generally showed modest conversion to the required products, hydrocinnamaldehyde, 3-phenyl propanol, cinnamyl alcohol together with formation of various decomposition products. The data revealed that the Co@HCS showed better conversion and product selectivity compared to the Co/HCS. The catalysts with smaller particle sizes (ca. 6 nm) were more efficient than big particles (30 – 40 nm). An increase in reaction temperature (200 – 300C) resulted in a lower cinnamaldehyde conversion and a poor product selectivity. TPR studies revealed that the Co@HCSs had a stronger metal-support interaction than the Co/HCSs catalysts. Catalyst recycling studies revealed that only the Co/HCSs could be regenerated (4 cycles) and post reaction analysis of the catalysts revealed that this was due to HCS pore blockage and not Co sintering.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres

    No full text
    Herein, the influence of the counter anion on the structural properties of hollow carbon spheres (HCS) support was investigated by varying the nickel metal precursor salts applied. TEM and SEM micrographs revealed the dimensional dependence of the HCS shell on the Ni precursor salt, as evidenced by thick (~42 nm) and thin (~23 nm) shells for the acetate and chloride-based salts, respectively. Importantly, the effect of the precursor salt on the textural properties of the HCS nanosupports (~565 m2/gNi(acet)) and ~607 m2/gNiCl), influenced the growth of the Ni nanoparticles, viz for the acetate-(ca 6.4 nm)- and chloride (ca 12 nm)-based salts, respectively. Further, XRD and PDF analysis showed the dependence of the reduction mechanism relating to nickel and the interaction of the nickel–carbon support on the type of counter anion used. Despite the well-known significance of the counter anion on the size and crystallinity of Ni nanoparticles, little is known about the influence of such counter anions on the physicochemical properties of the carbon support. Through this study, we highlight the importance of the choice of the Ni-salt on the size of Ni in Ni–carbon-based nanocatalysts

    Platinum Nanocatalysts Supported on Defective Hollow Carbon Spheres : Oxygen Reduction Reaction Durability Studies

    No full text
    The durability and long-term applicability of catalysts are critical parameters for the commercialization and adoption of fuel cells. Even though a few studies have been conducted on hollow carbon spheres (HCSs) as supports for Pt in oxygen reduction reactions (ORR) catalysis, in-depth durability studies have not been conducted thus far. In this study, Pt/HCSs and Pt/nitrogen-doped HCSs (Pt/NHCSs) were prepared using a reflux deposition technique. Small Pt particles were formed with deposition on the outside of the shell and inside the pores of the shell. The new catalysts demonstrated high activity (>380 μA cm−2 and 240 mA g−1) surpassing the commercial Pt/C by more than 10%. The catalysts demonstrated excellent durability compared to a commercial Pt/C in load cycling, experiencing less than 50% changes in the mass-specific activity (MA) and surface area-specific activity (SA). In stop-start durability cycling, the new materials demonstrated high stability with more than 50% retention of electrochemical active surface areas (ECSAs). The results can be rationalised by the high BET surface areas coupled with an array of meso and micropores that led to Pt confinement. Further, pair distribution function (PDF) analysis of the catalysts confirmed that the nitrogen and oxygen functional groups, as well as the shell curvature/roughness provided defects and nucleation sites for the deposition of the small Pt nanoparticles. The balance between graphitic and diamond-like carbon was critical for the electronic conductivity and to provide strong Pt-support anchoring
    corecore