2,696 research outputs found
Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond
The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a
factor of ~70 by coupling to a photonic crystal resonator fabricated in
monocrystalline diamond using standard semiconductor fabrication techniques.
Photon correlation measurements on the spectrally filtered zero-phonon line
show antibunching, a signature that the collected photoluminescence is emitted
primarily by a single nitrogen-vacancy center. The linewidth of the coupled
nitrogen-vacancy center and the spectral diffusion are characterized using
high-resolution photoluminescence and photoluminescence excitation
spectroscopy
Stimulated emission depletion microscopy with diamond silicon-vacancy centers
The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are promising fluorophores for STED microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. A home-built pulsed STED microscope was used to image shallow implanted SiV centers in bulk diamond at room temperature. The SiV stimulated emission cross section for 765-800 nm light is found to be (4.0 ± 0.3)×10^−17 cm^2, which is approximately 2-4 times larger than that of the negatively-charged diamond nitrogen vacancy center and approaches that of commonly-used organic dye molecules. We performed STED microscopy on isolated SiV centers and observed a lateral full-width-at-half- maximum spot size of 89 ± 2 nm, limited by the low available STED laser pulse energy (0.4 nJ). For a pulse energy of 5 nJ, the resolution is expected to be ∼20 nm. We show that the present microscope can resolve SiV centers separated by �� \u3c 150 nm that cannot be resolved by confocal microscopy
Towards Integrated Optical Quantum Networks in Diamond
We demonstrate coupling between the zero phonon line (ZPL) of nitrogen-vacancy centers in diamond and the modes of optical micro-resonators fabricated in single crystal diamond membranes sitting on a silicon dioxide substrate. A more than ten-fold enhancement of the ZPL is estimated by measuring the modification of the spontaneous emission lifetime. The cavity-coupled ZPL emission was further coupled into on-chip waveguides thus demonstrating the potential to build optical quantum networks in this diamond on insulator platform
Microwave-free magnetometry with nitrogen-vacancy centers in diamond
We use magnetic-field-dependent features in the photoluminescence of
negatively charged nitrogen-vacancy centers to measure magnetic fields without
the use of microwaves. In particular, we present a magnetometer based on the
level anti-crossing in the triplet ground state at 102.4 mT with a demonstrated
noise floor of 6 nT/, limited by the intensity noise of the
laser and the performance of the background-field power supply. The technique
presented here can be useful in applications where the sensor is placed closed
to conductive materials, e.g. magnetic induction tomography or magnetic field
mapping, and in remote-sensing applications since principally no electrical
access is needed.Comment: 5 pages, 4 figure
High density NV sensing surface created via He^(+) ion implantation of (12)^C diamond
We present a promising method for creating high-density ensembles of
nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity
magnetic imaging. Practically, narrow spin-resonance linewidths substantially
reduce the optical and RF power requirements for ensemble-based sensing. The
method combines isotope purified diamond growth, in situ nitrogen doping, and
helium ion implantation to realize a 100 nm-thick sensing surface. The obtained
10^(17) cm^(-3) nitrogen-vacancy density is only a factor of 10 less than the
highest densities reported to date, with an observed spin resonance linewidth
over 10 times more narrow. The 200 kHz linewidth is most likely limited by
dipolar broadening indicating even further reduction of the linewidth is
desirable and possible.Comment: 5 pages including references. 3 figure
- …