89 research outputs found

    Contribution of Different Anatomical and Physiologic Factors to Iris Contour and Anterior Chamber Angle Changes During Pupil Dilation: Theoretical Analysis

    Get PDF
    Citation: Jouzdani S, Amini R, Barocas VH. Contribution of different anatomical and physiologic factors to iris contour and anterior chamber angle changes during pupil dilation: theoretical analysis. Invest Ophthalmol Vis Sci. 2013;54:297754: -298454: . DOI:10. 1167 PURPOSE. To investigate the contribution of three anatomical and physiologic factors (dilator thickness, dynamic pupillary block, and iris compressibility) to changes in iris configuration and anterior chamber angle during pupil dilation. METHODS. A mathematical model of the anterior segment based on the average values of ocular dimensions was developed to simulate pupil dilation. To change the pupil diameter from 3.0 to 5.4 mm in 10 seconds, active dilator contraction was applied by imposing stress in the dilator region. Three sets of parameters were varied in the simulations: (1) a thin (4 lm, 1% of full thickness) versus a thick dilator (covering the full thickness iris) to quantify the effects of dilator anatomy, (2) in the presence (þPB) versus absence of pupillary block (ÀPB) to quantify the effect of dynamic motion of aqueous humor from the posterior to the anterior chamber, and (3) a compressible versus an incompressible iris to quantify the effects of iris volume change. Changes in the apparent iris-lens contact and angle open distance (AOD500) were calculated for each case. RESULTS. The thin case predicted a significant increase (average 700%) in iris curvature compared with the thick case (average 70%), showing that the anatomy of dilator plays an important role in iris deformation during dilation. In the presence of pupillary block (þPB), AOD500 decreased 25% and 36% for the compressible and incompressible iris, respectively. CONCLUSIONS. Iris bowing during dilation was driven primarily by posterior location of the dilator muscle and by dynamic pupillary block, but the effect of pupillary block was not as large as that of the dilator anatomy according to the quantified values of AOD500. Incompressibility of the iris, in contrast, had a relatively small effect on iris curvature but a large effect on AOD500; thus, we conclude that all three effects are important

    Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics

    Get PDF
    Mechanics of collagen gels, like that of many tissues, is governed by events occurring o

    Multiscale Mechanical Model of the Pacinian Corpuscle Shows Depth and Anisotropy Contribute to the Receptor's Characteristic Response to Indentation.

    No full text
    Cutaneous mechanoreceptors transduce different tactile stimuli into neural signals that produce distinct sensations of touch. The Pacinian corpuscle (PC), a cutaneous mechanoreceptor located deep within the dermis of the skin, detects high frequency vibrations that occur within its large receptive field. The PC is comprised of lamellae that surround the nerve fiber at its core. We hypothesized that a layered, anisotropic structure, embedded deep within the skin, would produce the nonlinear strain transmission and low spatial sensitivity characteristic of the PC. A multiscale finite-element model was used to model the equilibrium response of the PC to indentation. The first simulation considered an isolated PC with fiber networks aligned with the PC's surface. The PC was subjected to a 10 μm indentation by a 250 μm diameter indenter. The multiscale model captured the nonlinear strain transmission through the PC, predicting decreased compressive strain with proximity to the receptor's core, as seen experimentally by others. The second set of simulations considered a single PC embedded epidermally (shallow) or dermally (deep) to model the PC's location within the skin. The embedded models were subjected to 10 μm indentations at a series of locations on the surface of the skin. Strain along the long axis of the PC was calculated after indentation to simulate stretch along the nerve fiber at the center of the PC. Receptive fields for the epidermis and dermis models were constructed by mapping the long-axis strain after indentation at each point on the surface of the skin mesh. The dermis model resulted in a larger receptive field, as the calculated strain showed less indenter location dependence than in the epidermis model
    • …
    corecore