3 research outputs found

    Microstructure Evolution and Growth of Interfacial Intermetallic Compounds in NiCr/Ti Alloy Laminated Composite after Explosive Welding and Heat Treatment

    No full text
    The paper considers the issues of interaction of the molten metal at the interface of explosively welded NiCr/titanium alloy laminated composites with the reaction zone formed during heat treatment, as well as the features of its destruction after welding. It was established that the molten metal is a heterogeneous mixture based on Ni(Cr,Ti) and Ti(Ni,Al) solid solutions and NiTi and Ni3Ti intermetallic compounds. The estimated existence time of molten metal areas in the liquid state was ~10βˆ’8–10βˆ’11 s. The obtained values are comparable with the time of the unloading wave arrival at the contact surface, which is the reason for the presence of fracture areas in the form of detachments on the fracture surface. Continuous nanometer-size interlayers with an amorphous structure, due to the ultra-high cooling rate of the liquid melt, induce viscous destruction of the interface. Heat treatment at temperatures of 700 and 850 Β°C led to the formation of a layered reaction zone at the NiCr/Ti boundary, consisting of interlayers of solid solutions based on Ti2Ni, TiNi, and TiNi3 intermetallic compounds, as well as inclusions of a Cr(Ti) solid solution. The diffusion flow gradient was predominantly directed into the titanium alloy
    corecore