3 research outputs found

    Performance Fabrics Obtained by In Situ Growth of Metal-Organic Frameworks in Electrospun Fibers

    Get PDF
    Metal–organic frameworks (MOFs) exhibit an exceptional surface area-to-volume ratio, variable pore sizes, and selective binding, and hence, there is an ongoing effort to advance their processability for broadening their utilization in different applications. In this work, we demonstrate a general scheme for fabricating freestanding MOF-embedded polymeric fibers, in which the fibers themselves act as microreactors for the in situ growth of the MOF crystals. The MOF-embedded fibers are obtained via a two-step process, in which, initially, polymer solutions containing the MOF precursors are electrospun to obtain microfibers, and then, the growth of MOF crystals is initiated and performed via antisolvent-induced crystallization. Using this approach, we demonstrate the fabrication of composite microfibers containing two types of MOFs: copper (II) benzene-1,3,5-tricarboxylic acid (HKUST-1) and zinc (II) 2-methylimidazole (ZIF-8). The MOF crystals grow from the fiber’s core toward its outer rims, leading to exposed MOF crystals that are well rooted within the polymer matrix. The MOF fibers obtained using this method can reach lengths of hundreds of meters and exhibit mechanical strength that allows arranging them into dense, flexible, and highly durable nonwoven meshes. We also examined the use of the MOF fiber meshes for the immobilization of the enzymes catalase and horse radish peroxidase (HRP), and the enzyme-MOF fabrics exhibit improved performance. The MOF-embedded fibers, demonstrated in this work, hold promise for different applications including separation of specific chemical species, selective catalysis, and sensing and pave the way to new MOF-containing performance fabrics and active membranes

    Interface fracture toughness of a multi-directional woven composite

    Full text link
    The aim of this investigation is to measure the interface fracture toughness of a woven composite. For this purpose, double cantilever beam (DCB) specimens are tested to measure the load as the delamination grows. The specimen is composed of 15 layers of a carbon-epoxy, balanced weave with alternate layers containing fibers in the directions and the directions. A thin piece of Teflon is placed between two layers of differing directions. The specimens are analyzed by means of the finite element method and an interaction energy or -integral to determine the stress intensity factors, interface energy release rate and phase angles. The first term of the asymptotic solution for the stress and displacement fields obtained by means of the Stroh and Lekhnitskii formalisms is used to define auxiliary solutions for the -integral. The critical interface energy release rate is found and exhibits a slowly increasing resistance curve. Comparisons are made to a simple expression from the literature
    corecore