3 research outputs found

    Technology for Improving the Efficiency of Fractured Reservoir Development Using Gel-Forming Compositions

    No full text
    Increasing the field development efficiency of fractured reservoirs is a contemporary issue. This paper presents fundamental and exploratory research results in this field using modern high-tech experimental equipment from the “Arctic” Scientific Centre at the Saint Petersburg Mining University. Oil reserves in fractured reservoirs are enormous; however, they are classified as hard-to-recover. The before-mentioned reservoirs require a specific approach when selecting technologies to improve the efficiency of their development. In this paper, as a solution to the problem under discussion, we propose the use of a physicochemical method of developing fractured reservoirs based on the injection of a water shut-off agent to exclude highly permeable water-conducting fractures from the drainage process. This technology makes it possible to effectively include and develop previously undrained reservoir areas by directly controlling their filtration properties with the use of new highly efficient and ecologically safe chemical reagents and process fluids

    Technology for Improving the Efficiency of Fractured Reservoir Development Using Gel-Forming Compositions

    No full text
    Increasing the field development efficiency of fractured reservoirs is a contemporary issue. This paper presents fundamental and exploratory research results in this field using modern high-tech experimental equipment from the “Arctic” Scientific Centre at the Saint Petersburg Mining University. Oil reserves in fractured reservoirs are enormous; however, they are classified as hard-to-recover. The before-mentioned reservoirs require a specific approach when selecting technologies to improve the efficiency of their development. In this paper, as a solution to the problem under discussion, we propose the use of a physicochemical method of developing fractured reservoirs based on the injection of a water shut-off agent to exclude highly permeable water-conducting fractures from the drainage process. This technology makes it possible to effectively include and develop previously undrained reservoir areas by directly controlling their filtration properties with the use of new highly efficient and ecologically safe chemical reagents and process fluids

    Investigation of the Selectivity of the Water Shutoff Technology

    No full text
    High water-cut oil production is one of the major issues in the petroleum industry. The present study investigates different profile control solutions, with an emphasis on selective methods and materials that mostly decrease the permeability of water-saturated reservoir areas. To achieve the selective water flow blockage in fractured porous media, the sodium silicate-based gel-forming composition was developed. The test procedure was created to assess selective and strength characteristics of the presented composition. According to the results of this procedure, adding polyatomic alcohols to the mentioned composition enhances its hydrophilic behavior in water-saturated rocks (work of adhesion increases from 117 to 129 mJ/m2) and reduces the hydrophobic behavior in oil-saturated rocks (work of adhesion drops from 110.3 to 77.4 mJ/m2). The selectivity of the composition performance is validated by its higher wettability of water-saturated reservoir rocks compared with oil-saturated; thus, the composition creates a more stable water shutoff barrier when entering the water zone in a formation. As a result of core flooding experiments in natural, fractured, porous core samples, the efficiency of the water blocking capacity of the composition was proved. In addition, these tests showed the selectivity of the composition because the permeability decrease in water-saturated core samples was higher than in oil-saturated ones. The experimental value of the selectivity coefficient was 152.14
    corecore