14,014 research outputs found

    Skewed Sudakov Regime, Harmonic Numbers, and Multiple Polylogarithms

    Full text link
    On the example of massless QED we study an asymptotic of the vertex when only one of the two virtualities of the external fermions is sent to zero. We call this regime the skewed Sudakov regime. First, we show that the asymptotic is described with a single form factor, for which we derive a linear evolution equation. The linear operator involved in this equation has a discrete spectrum. Its eigenfunctions and eigenvalues are found. The spectrum is a shifted sequence of harmonic numbers. With the spectrum found, we represent the expansion of the asymptotic in the fine structure constant in terms of multiple polylogarithms. Using this representation, the exponentiation of the doubly logarithmic corrections of the Sudakov form factor is recovered. It is pointed out that the form factor of the skewed Sudakov regime is growing with the virtuality of a fermion decreasing at a fixed virtuality of another fermion.Comment: 6 page

    Capital flight and war

    Get PDF
    The author provides empirical evidence on the effects of inflation on post-war capital flight flows. He tests the hypothesis that inflation has a positive additional impact on capital flight flows after war. He uses a new panel dataset of 77 developing countries, of which 35 experienced at least one episode of war between 1971 and 2000. The author uses a range of estimation methods and four capital flight measures-Cline, World Bank Residual, Morgan Guarantee, and Dooley. The results consistently support the research hypothesis: Post-war inflation increases annual capital flight flows by about 0.005 to 0.01 percentage points of GDP. This effect is substantial in total at high inflation rates. The implication is that low inflation helps to curb capital flight in post-conflict economies.Economic Theory&Research,Banks&Banking Reform,Investment and Investment Climate,Settlement of Investment Disputes,Achieving Shared Growth

    The Challenge of Light-Front Quantisation: Recent Results

    Get PDF
    We explain what is the challenge of light-front quantisation, and how we can now answer it because of recent progress in solving the problem of zero modes in the case of non-Abelian gauge theories. We also give a description of the light-front Hamiltonian for SU(2) finite volume gluodynamics resulting from this recent solution to the problem of light-front zero modes.Comment: 17 pages, lecture delivered by GBP at the XXXIV PNPI Winter School, Repino, St.Petersburg, Russia, February 14-20, 2000, version to appear in the Proceeding

    Combined Modality Therapies for High-Risk Prostate Cancer: Narrative Review of Current Understanding and New Directions.

    Get PDF
    Despite the many prospective randomized trials that have been available in the past decade regarding the optimization of radiation, hormonal, and surgical therapies for high-risk prostate cancer (PCa), many questions remain. There is currently a lack of level I evidence regarding the relative efficacy of radical prostatectomy (RP) followed by adjuvant radiation compared to radiation therapy (RT) combined with androgen deprivation therapy (ADT) for high-risk PCa. Current retrospective series have also described an improvement in biochemical outcomes and PCa-specific mortality through the use of augmented radiation strategies incorporating brachytherapy. The relative efficacy of modern augmented RT compared to RP is still incompletely understood. We present a narrative review regarding recent advances in understanding regarding comparisons of overall and PCa-specific mortality measures among patients with high-risk PCa treated with either an RP/adjuvant RT or an RT/ADT approach. We give special consideration to recent trends toward the assembly of multi-institutional series targeted at providing high-quality data to minimize the effects of residual confounding. We also provide a narrative review of recent studies examining brachytherapy boost and systemic therapies, as well as an overview of currently planned and ongoing studies that will further elucidate strategies for treatment optimization over the next decade

    Electron Confinement, Orbital Ordering, and Orbital Moments in d0d^0-d1d^1 Oxide Heterostructures

    Full text link
    The (SrTiO3_3)m_m/(SrVO3_3)n_n d0−d1d^0-d^1 multilayer system is studied with first principles methods through the observed insulator-to-metal transition with increasing thickness of the SrVO3_3 layer. When correlation effects with reasonable magnitude are included, crystal field splittings from the structural relaxations together with spin-orbit coupling (SOC) determines the behavior of the electronic and magnetic structures. These confined slabs of SrVO3_3 prefer QorbQ_{orb}=(π,π\pi,\pi) orbital ordering of ℓz=0\ell_z = 0 and ℓz=−1\ell_z = -1 (jz=−1/2j_z=-1/2) orbitals within the plane, accompanied by QspinQ_{spin}=(0,0) spin order (ferromagnetic alignment). The result is a SOC-driven ferromagnetic Mott insulator. The orbital moment of 0.75 ÎŒB\mu_B strongly compensates the spin moment on the ℓz=−1\ell_z = -1 sublattice. The insulator-metal transition for n=1→5n = 1 \to 5 (occurring between nn=4 and nn=5) is reproduced. Unlike in the isoelectronic d0−d1d^0-d^1 TiO2_2/VO2_2 (rutile structure) system and in spite of some similarities in orbital ordering, no semi-Dirac point [{\it Phys. Rev. Lett.} {\bf 102}, 166803 (2009)] is encountered, but the insulator-to-metal transition occurs through a different type of unusual phase. For n=5 this system is very near (or at) a unique semimetallic state in which the Fermi energy is topologically determined and the Fermi surface consists of identical electron and hole Fermi circles centered at kk=0. The dispersion consists of what can be regarded as a continuum of radially-directed Dirac points, forming a "Dirac circle".Comment: 9 pages, 8 figure

    Sequential Allocation and Balancing Prognostic Factors in a Psychiatric Clinical Trial

    Get PDF
    In controlled clinical trials, each of several prognostic factors should be balanced across the trial arms. Traditional restricted randomization may be proved inadequate especially with small sample sizes. In psychiatric disorders such as obsessive compulsive disorder (OCD), small trials prevail. Therefore, procedures to minimize the chance of imbalance between treatment arms are advisable. This paper describes a minimization procedure specifically designed for a clinical trial that evaluates treatment efficacy for OCD patients. Aitchison's compositional distance was used to calculate vectors for each possibility of allocation in a covariate adaptive method. Two different procedures were designed to allocate patients in small blocks or sequentially one-by-one. Partial results of this allocation procedure as well as simulated ones are shown. In the clinical trial for which this procedure was developed, the balancing between treatment arms was achieved successfully. Simulations of results considering different arrival order of patients showed that most of the patients are allocated in a different treatment arm if arrival order is modified. Results show that a random factor is maintained with the random arrival order of patients. This specific procedure allows the use of a large number of prognostic factors for the allocation decision and was proved adequate for a psychiatric trial design

    Anisotropic interaction of two-level systems with acoustic waves in disordered crystals

    Full text link
    We apply the model introduced in Phys. Rev. B 75, 064202 (2007), cond-mat/0610469, to calculate the anisotropy effect in the interaction of two level systems with phonons in disordered crystals. We particularize our calculations to cubic crystals and compare them with the available experimental data to extract the parameters of the model. With these parameters we calculate the interaction of the dynamical defects in the disordered crystal with phonons (or sound waves) propagating along other crystalographic directions, providing in this way a method to investigate if the anisotropy comes from the two-level systems being preferably oriented in a certain direction or solely from the lattice anisotropy with the two-level systems being isotropically oriented.Comment: 10 page
    • 

    corecore