226 research outputs found

    Childhood Obesity: A Survey of the Nutrition and Physical Activity Components of the Coordinated School Health (CSH) Program in Rural Tennessee

    Get PDF
    With the rise in childhood overweight and obesity rates in the United States, understanding the issue has become of mainstay importance. This study provides insight into the nutritional knowledge and related health perceptions of parents’ whose children have participated in a Coordinated School Health (CSH) program in rural Tennessee. Surveys were distributed between two elementary grade level school systems in Washington County, Tennessee, to serve the need of interpreting the knowledge, values, and ideas on childhood health regarding CSH program effectiveness. While our findings across both schools revealed moderate levels of parental knowledge on health and nutritional issues, we also identified several disparities surrounding knowledge about the childhood overweight and obesity issue. Based on these results, we conclude that schools in rural areas may benefit from the implementation of a periodic assessment gauging parental knowledge and attitudes. In turn, understanding where these gaps exist may help CSH program administrators identify possible program modifications, provide targeted resource support to parents, and, ultimately, address stalling body mass index improvement rates among students who live in rural areas

    Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation

    Get PDF
    Ischemia reperfusion injury results from tissue damage during ischemia and ongoing inflammation and injury during reperfusion. Liver reperfusion injury is reduced by lymphocyte depletion or activation of adenosine A2A receptors (A2ARs) with the selective agonist 4- {3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]- prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester (ATL146e). We show that NKT cells are stimulated to produce interferon (IFN)-γ by 2 h after the initiation of reperfusion, and the use of antibodies to deplete NK1.1-positive cells (NK and NKT) or to block CD1d-mediated glycolipid presentation to NKT cells replicates, but is not additive to, the protection afforded by ATL146e, as assessed by serum alanine aminotransferase elevation, histological necrosis, neutrophil accumulation, and serum IFN-γ elevation. Reduced reperfusion injury observed in RAG-1 knockout (KO) mice is restored to the wild-type (WT) level by adoptive transfer of NKT cells purified from WT or A2AR KO mice but not IFN-γ KO mice. Additionally, animals with transferred A2AR−/− NKT cells are not protected from hepatic reperfusion injury by ATL146e. In vitro, ATL146e potently inhibits both anti-CD3 and α-galactosylceramide–triggered production of IFN-γ by NKT cells. These findings suggest that hepatic reperfusion injury is initiated by the CD1d-dependent activation of NKT cells, and the activation of these cells is inhibited by A2AR activation

    EXTUBATE: A randomised controlled trial of nasal biphasic positive airway pressure vs. nasal continuous positive airway pressure following extubation in infants less than 30 weeks' gestation: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiratory distress syndrome remains a significant problem among premature infants. Mechanical ventilation through an endotracheal tube remains the mainstay of respiratory support but may be associated with lung injury and the development of chronic lung disease of prematurity. Efforts are needed to reduce the duration of mechanical ventilation in favour of less invasive forms of respiratory support and to improve rates of successful extubation.</p> <p>Non-invasive respiratory support has been demonstrated to be less injurious to the premature lung. Standard practice is to use nasal continuous positive airway pressure (n-CPAP) following extubation to support the baby's breathing. Many clinicians also use nasal biphasic positive airway pressure (n-BiPAP) in efforts to improve rates of successful extubation. However, there is currently no evidence that this confers any advantage over conventional nasal continuous positive airway pressure.</p> <p>Methods</p> <p>We propose an unblinded multi-centre randomised trial comparing n-CPAP with n-BiPAP in babies born before 30 weeks' gestation and less than two weeks old. Babies with congenital abnormalities and severe intra-ventricular haemorrhage will be excluded. 540 babies admitted to neonatal centres in England will be randomised at the time of first extubation attempt. The primary aim of this study is to compare the rate of extubation failure within 48 hours following the first attempt at extubation. The secondary aims are to compare the effect of n-BiPAP and n-CPAP on the following outcomes:</p> <p>1. Maintenance of successful extubation for 7 days post extubation</p> <p>2. Oxygen requirement at 28 days of age and at 36 weeks' corrected gestational age</p> <p>3. Total days on ventilator, n-CPAP/n-BiPAP</p> <p>4. Number of ventilator days following first extubation attempt</p> <p>5. pH and partial pressure of carbon dioxide in the first post extubation blood gas</p> <p>6. Duration of hospital stay</p> <p>7. Rate of abdominal distension requiring cessation of feeds</p> <p>8. Rate of apnoea and bradycardia</p> <p>9. The age at transfer back to referral centre in days</p> <p>The trial will determine whether n-BiPAP is safe and superior to n-CPAP in preventing extubation failure in babies born before 30 weeks' gestation and less than two weeks old.</p> <p>Trial registration number</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN18921778">ISRCTN18921778</a></p

    Generation of Human Striatal Neurons by MicroRNA-Dependent Direct Conversion of Fibroblasts

    Get PDF
    SummaryThe promise of using reprogrammed human neurons for disease modeling and regenerative medicine relies on the ability to induce patient-derived neurons with high efficiency and subtype specificity. We have previously shown that ectopic expression of brain-enriched microRNAs (miRNAs), miR-9/9∗ and miR-124 (miR-9/9∗-124), promoted direct conversion of human fibroblasts into neurons. Here we show that coexpression of miR-9/9∗-124 with transcription factors enriched in the developing striatum, BCL11B (also known as CTIP2), DLX1, DLX2, and MYT1L, can guide the conversion of human postnatal and adult fibroblasts into an enriched population of neurons analogous to striatal medium spiny neurons (MSNs). When transplanted in the mouse brain, the reprogrammed human cells persisted in situ for over 6 months, exhibited membrane properties equivalent to native MSNs, and extended projections to the anatomical targets of MSNs. These findings highlight the potential of exploiting the synergism between miR-9/9∗-124 and transcription factors to generate specific neuronal subtypes

    Relationship between Expression of the Family of M Proteins and Lipoteichoic Acid to Hydrophobicity and Biofilm Formation in Streptococcus pyogenes

    Get PDF
    Background: Hydrophobicity is an important attribute of bacteria that contributes to adhesion and biofilm formation. Hydrophobicity of Streptococcus pyogenes is primarily due to lipoteichoic acid (LTA) on the streptococcal surface but the mechanism(s) whereby LTA is retained on the surface is poorly understood. In this study, we sought to determine whether members of the M protein family consisting of Emm (M protein), Mrp (M-related protein), Enn (an M-like protein), and the streptococcal protective antigen (Spa) are involved in anchoring LTA in a manner that contributes to hydrophobicity of the streptococci and its ability to form biofilms. Methodology/Principal Findings: Isogenic mutants defective in expression of emm, mrp, enn, and/or spa genes of eight different serotypes and their parental strains were tested for differences in LTA bound to surface proteins, LTA released into the culture media, and membrane-bound LTA. The effect of these mutations on the ability of streptococci to form a hydrophobic surface and to generate biofilms was also investigated. A recombinant strain overexpressing Emm1 was also engineered and similarly tested. The serotypes tested ranged from those that express only a single M protein gene to those that express two or three members of the M protein family. Overexpression of Emm1 led to enhanced hydrophobicity an

    A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia

    Get PDF
    The pathogenesis of malarial anemia is multifactorial, and the mechanisms responsible for its high mortality are poorly understood. Studies indicate that host mediators produced during malaria infection may suppress erythroid progenitor development (Miller, K.L., J.C. Schooley, K.L. Smith, B. Kullgren, L.J. Mahlmann, and P.H. Silverman. 1989. Exp. Hematol. 17:379–385; Yap, G.S., and M.M. Stevenson. 1991. Ann. NY Acad. Sci. 628:279–281). We describe an intrinsic role for macrophage migration inhibitory factor (MIF) in the development of the anemic complications and bone marrow suppression that are associated with malaria infection. At concentrations found in the circulation of malaria-infected patients, MIF suppressed erythropoietin-dependent erythroid colony formation. MIF synergized with tumor necrosis factor and γ interferon, which are known antagonists of hematopoiesis, even when these cytokines were present in subinhibitory concentrations. MIF inhibited erythroid differentiation and hemoglobin production, and it antagonized the pattern of mitogen-activated protein kinase phosphorylation that normally occurs during erythroid progenitor differentiation. Infection of MIF knockout mice with Plasmodium chabaudi resulted in less severe anemia, improved erythroid progenitor development, and increased survival compared with wild-type controls. We also found that human mononuclear cells carrying highly expressed MIF alleles produced more MIF when stimulated with the malarial product hemozoin compared with cells carrying low expression MIF alleles. These data suggest that polymorphisms at the MIF locus may influence the levels of MIF produced in the innate response to malaria infection and the likelihood of anemic complications

    Mapping our Universe in 3D with MITEoR

    Full text link
    Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral hydrogen has the potential to overtake the cosmic microwave background as our most powerful cosmological probe, because it can map a much larger volume of our Universe, shedding new light on the epoch of reionization, inflation, dark matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder low-frequency radio interferometer whose goal is to test technologies that greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR accomplishes this by using massive baseline redundancy both to enable automated precision calibration and to cut the correlator cost scaling from N^2 to NlogN, where N is the number of antennas. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious HERA project, which would incorporate many identical or similar technologies using an order of magnitude more antennas, each with dramatically larger collecting area.Comment: To be published in proceedings of 2013 IEEE International Symposium on Phased Array Systems & Technolog
    corecore