75 research outputs found

    Assessment of crystallographic orientation effects on secondary ion mass spectrometry (SIMS) analysis of cassiterite

    Get PDF
    Crystallographic orientation effects on ion microprobe analyses for U-Pb and O-isotopes have been reported for a number of oxide minerals, including rutile (TiO₂) and baddeleyite (ZrO₂). Here we evaluate the effects of crystal orientation on U-Pb and O-isotopic data measured by ion microprobe on cassiterite (SnO₂), which is isostructural with rutile. The crystallographic orientations of mounted and polished grains of cassiterite were determined by electron backscatter diffraction (EBSD). Those grains were then analysed for U-Th-Pb isotopes and ¹⁸O/¹⁶O compositions using the SHRIMP RG and SHRIMP SI ion microprobes, respectively. Based on these data, cassiterite appears to show no dependence of key measurement parameters such as UO₂/UO, Pb/UO, or ¹⁸O/¹⁶O ratios at the achieved precision with crystallographic orientation. The contrasting behaviour of isostructural cassiterite and rutile provides new insights into the mechanisms leading to crystallographic orientation effects during ion microprobe analyses with electronic structure proposed as being a significant factor

    The Sanandaj-Sirjan Zone in the Neo-Tethyan suture, western Iran: Zircon U-Pb evidence of late Palaeozoic rifting of northern Gondwana and mid-Jurassic orogenesis

    Get PDF
    The Zagros Orogen, marking the closure of the Neo-Tethyan Ocean, formed by continental collision beginning in the late Eocene to early Miocene. Collision was preceded by a complicated tectonic history involving Pan-African orogenesis, Late Palaeozoic rifting forming Neo-Tethys, followed by Mesozoic convergence on the ocean\u27s northern margin and ophiolite obduction on its southern margin. The Sanandaj-Sirjan Zone is a metamorphic belt in the Zagros Orogen of Gondwanan provenance. Zircon ages have established Pan-African basement igneous and metamorphic complexes in addition to uncommon late Palaeozoic plutons and abundant Jurassic plutonic rocks. We have determined zircon ages from units in the northwestern Sanandaj-Sirjan Zone (Golpaygan region). A sample of quartzite from the June Complex has detrital zircons with U-Pb ages mainly in 800-1050 Ma with a maximum depositional age of 547 ± 32 Ma (latest Neoproterozoic¿earliest Cambrian). A SHRIMP U-Pb zircon age of 336 ± 9 Ma from gabbro in the June Complex indicates a Carboniferous plutonic event that is also recorded in the far northwestern Sanandaj-Sirjan Zone. Together with the Permian Hasanrobat Granite near Golpaygan, they all are considered related to rifting marking formation of Neo-Tethys. Scarce detrital zircons from an extensive package of metasedimentary rocks (Hamadan Phyllite) have ages consistent with the Triassic to Early Jurassic age previously determined from fossils. These ages confirm that an orogenic episode affected the Sanandaj-Sirjan Zone in the Early to Middle Jurassic (Cimmerian Orogeny). Although the Cimmerian Orogeny in northern Iran reflects late Triassic to Jurassic collision of the Turan platform (southern Eurasia) and the Cimmerian microcontinent, we consider that in the Sanandaj-Sirjan Zone a tectonothermal event coeval with the Cimmerian Orogeny resulted from initiation of subduction and closure of rift basins along the northern margin of Neo-Tethys

    Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    Get PDF
    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia

    Seeing through the magnetite: Reassessing Eoarchean atmosphere composition from Isua (Greenland) =3.7 Ga banded iron formations

    Get PDF
    Estimates of early atmosphere compositions from metamorphosed banded iron formations (BIFs) including the well-studied ≥3.7 BIFs of the Isua supracrustal belt (Greenland) are dependent on knowledge of primary versus secondary Fe-mineralogical assemblages. Using new observations from locally well preserved domains, we interpret that a previously assumed primary redox indicator mineral, magnetite, is secondary after sedimentary Fe-clays (probably greenalite) ± carbonates. Within ∼3.7 Ga Isua BIF, pre-tectonic nodules of quartz + Fe-rich amphibole ± calcite reside in a fine-grained (≤100 μm) quartz + magnetite matrix. We interpret the Isua nodule amphibole as the metamorphosed equivalent of primary Fe-rich clays, armoured from diagenetic oxidative reactions by early silica concretion. Additionally, in another low strain lacunae, ∼3.76 Ga BIF layering is not solid magnetite but instead fine-grained magnetite + quartz aggregates. These magnetite + quartz aggregates are interpreted as the metamorphosed equivalent of Fe-clay-rich layers that were oxidised during diagenesis, because they were not armoured by early silicification. In almost all Isua BIF exposures, this evidence has been destroyed by strong ductile deformation. The Fe-clays likely formed by abiotic reactions between aqueous Fe2+ and silica. These clays along with silica ± carbonate were deposited below an oceanic Fe-chemocline as the sedimentary precursors of BIF. Breakdown of the clays on the sea floor may have been by anaerobic oxidation of Fe2+, a mechanism compatible with iron isotopic data previously published on these rocks. The new determinations of the primary redox-sensitive Fe-mineralogy of BIF significantly revise estimates of early Earth atmospheric oxygen and CO2 content, with formation of protolith Fe-rich clays and carbonates compatible with an anoxic Eoarchean atmosphere with much higher CO2 levels than previously estimated for Isua and in the present-day atmosphere. © 2017 China University of Geosciences (Beijing) and Peking University.The project was supported by Australian Research Council (Grant No. DP120100273) and the GeoQuEST Research Centre of the University of Wollongong, Australi

    Mesoarchaean collision of Kapisilik terrane 3070Ma juvenile arc rocks and \u3e3600Ma Isukasia terrane continental crust (Greenland)

    Get PDF
    The Mesoarchaean Kapisilik and Eoarchaean Isukasia terranes in the Nuuk region of southern West Greenland were tectonically juxtaposed in the Archaean. The north of the Isukasia terrane is distal from the Kapisilik terrane and has only rare growth of ~2690Ma metamorphic zircon and no 2980-2950Ma metamorphic zircon. The southern part of the Isukasia terrane lies between two ~2690Ma shear zones, and has locally preserved high pressure granulite facies assemblages and widespread growth of 2980-2950Ma metamorphic zircon and also sporadic growth of ~2690Ma metamorphic zircon. Within this southern part of the Isukasia terrane there is a folded klippe of mylonitised Mesoarchaean detrital meta-sedimentary rocks (carrying \u3e3600 and ~3070Ma detrital zircons), mafic and ultramafic rocks, with ~2970Ma metamorphic zircon overgrowths. South of the Isukasia terrane is the Kapisilik terrane, containing ~3070Ma arc-related volcanic rocks, gabbro-anorthosites and meta-tonalites, intruded by 2970-2960Ma granites. Zircons of an Ivisârtoq supracrustal belt ~3075Ma intermediate volcanic rock have initial e{open}Hf values of +2 to +5 thus are juvenile crustal additions. ~3070Ma tonalites along the northern edge of the Kapisilik terrane have whole rock positive initial e{open}Nd values and thus are also juvenile crustal additions. In contrast, igneous zircons in 2960Ma granites intruded into juvenile ~3075Ma supracrustal rocks of the Kapisilik terrane have initial e{open}Hf values of -5 to -10, and must have involved the partial melting of \u3e3600Ma Isukasia terrane rocks.The integrated structural and zircon U-Th-Pb-Hf isotopic data show that at 2980-2950. Ma the Kapisilik terrane juvenile arc components collided with, and over-rid, the Isukasia terrane. The southern edge of the Isukasia terrane came to lie in the deep crust under the Ivisârtoq supracrustal belt and melted at 2970-2960. Ma to produce granites. These granites derived from ancient crust rose into the upper crust, where they intruded the overlying allochthonous juvenile ~3075. Ma Ivisârtoq supracrustal belt arc assemblages. The southern edge of the Isukasia terrane is interpreted as an interior nappe of Eoarchaean basement rocks interfolded with a klippe of Mesoarchaean metasedimentary and mafic/ultramafic rocks, both of which are affected by 2980-2950. Ma metamorphism. The mixed Eoarchaean-Mesoarchaean detrital provenance suggests that the klippe could be dismembered components of an accretionary prism or forearc crust. The northern part of the Isukasia terrane is interpreted as foreland, free of 2980-2950. Ma high-grade metamorphic overprint. This shows that the Isukasia terrane is not a coherent block, but contains ancient rocks that are parautochthonous or allochthonous to each other, with contrasting later metamorphic history.At ~2690. Ma the crustal architecture arisen from Mesoarchaean collision between an older continental block and an island arc was reworked along intra-crustal shear zones, coeval with amphibolite facies metamorphism. This reworking followed on from major terrane assembly at 2710-2700. Ma in the southern part of the Nuuk region, when the Eoarchaean Færingehavn terrane was juxtaposed with 2840-2825. Ma arc rocks. Thus the 2980-2950. Ma assembly of the Isukasia and Kapisilik terranes is distinct from the later 2710-2700. Ma terrane assembly further south in the Nuuk region

    Biocompatibility for the new lasering surface titanium implant : Examination for cell and tissue reaction

    Get PDF
    松本歯科大学大学院歯学独立研究科博士(歯学)学位申請論文;健康増進口腔科学講座(主指導教員:八上 公利教授

    Archaean fluid-assisted crustal cannibalism recorded by low delta O-18 and negative epsilon(Hf(T)) isotopic signatures of West Greenland granite zircon

    Get PDF
    The role of fluids during Archaean intra-crustal magmatism has been investigated via integrated SHRIMP U–Pb, δ18O and LA-MC-ICPMS 176Hf isotopic zircon analysis. Six rock samples studied are all from the Nuuk region (southern West Greenland) including two ~3.69 Ga granitic and trondhjemitic gneisses, a 3.64 Ga granitic augen gneiss, a 2.82 Ga granodioritic Ikkattoq gneiss, a migmatite with late Neoarchaean neosome and a homogeneous granite of the 2.56 Ga Qôrqut Granite Complex (QGC). All zircon grains were thoroughly imaged to facilitate analysis of magmatic growth domains. Within the zircon analysed, there is no evidence for metamictization. Initial εHf zircon values (n = 63) are largely sub-chondritic, indicating the granitic host magmas were generated by the remelting of older, un-radiogenic crustal components. Zircon from some granite samples displays more than one 207Pb/206Pb age, and correlated with 176Hf/177Hf compositions can trace multiple phases of remelting or recrystallization during the Archaean. Model ages calculated using Lu/Hf arrays for each sample indicate that the crustal parental rocks to the granites, granodiorites and trondhjemites segregated from a chondrite-like reservoir at an earlier time during the Archaean, corresponding to known formation periods of more primitive tonalite–trondhjemite–granodiorite (TTG) gneisses. Zircon from the ~3.69 Ga granite, the migmatite and QGC granite contains Eoarchaean cores with chondritic 176Hf/177Hf and mantle-like δ18O compositions. The age and geochemical signatures from these inherited components are identical to those of surrounding tonalitic gneisses, further suggesting genesis of these granites by remelting of broadly tonalitic protoliths. Zircon oxygen isotopic compositions (n = 62) over nine age populations (six igneous and three inherited) have weighted mean or mean δ18O values ranging from 5.8 ± 0.6 to 3.7 ± 0.5‰. The 3.64 Ga granitic augen gneiss sample displays the highest δ18O with a mildly supra-mantle composition of 5.8 ± 0.6‰. Inherited Eoarchaean TTG-derived zircon shows mantle-like values. Igneous zircon from all other samples, spanning more than a billion years of Archaean time, record low δ18O sub-mantle compositions. These are the first low δ18O signatures reported from Archaean zircon and represent low δ18O magmas formed by the remelting and metamorphism of older crustal rocks following high-temperature hydrothermal alteration by meteoric water. Meteoric fluid ingress coupled with crustal extension, associated high heat flow and intra-crustal melting are a viable mechanism for the production of the low δ18O granites, granodiorites and trondhjemites reported here. Both high and low δ18O magmas may have been generated in extensional environments and are distinct in composition from Phanerozoic I-type granitic plutonic systems, which are typified by increasing δ18O during intra-crustal reworking. This suggests that Archaean magmatic processes studied here were subtly different from those operating on the modern Earth and involved extensional tectonic regimes and the predominance of remelting of hydrothermally altered crystalline basement
    corecore