50 research outputs found
Ramipril inhibits AGE-RAGE-induced matrix metalloproteinase-2 activation in experimental diabetic nephropathy
Background: Advanced glycation end products (AGE)-receptor for AGE (RAGE) axis and renin-angiotensin system (RAS) play a role in diabetic nephropathy (DN). Matrix metalloproteinase-2 (MMP-2) activation also contributes to DN. However, the pathological interaction among AGE-RAGE, RAS and MMP-2 in DN remains unknown. We examined here the involvement of AGE and RAS in MMP-2 activation in streptozotocin (STZ)-induced diabetic rats and in AGE-exposed rat renal proximal tubular cells (RPTCs).Methods. Experimental diabetes was induced in 6-week-old male Sprague-Dawley (SD) rats by intravenous injection of STZ. Diabetic rats received ramipril (3 mg/kg body weight/day) or vehicle for 32 weeks. AGE-modified rat serum albumin (AGE-RSA) or RSA was intraperitoneally administrated to 6-week-old male SD rats for 16 weeks. RPTCs were stimulated with 100 μg/ml AGE-modified bovine serum albumin (AGE-BSA) or BSA in the presence or absence of 10 M ramiprilat, an inhibitor of angiotensin-converting enzyme or 100 nM BAY11-7082, an IκB- phosphorylation inhibitor.Results: AGE and RAGE expression levels and MMP-2 activity in the tubules of diabetic rats was significantly increased in association with increased albuminuria, all of which were blocked by ramipril. AGE infusion induced tubular MMP-2 activation and RAGE gene expression in SD rats. Ramiprilat or BAY11-7082 inhibited the AGE-induced MMP-2 activation or reactive oxygen species generation in RPTCs. Angiotensin II increased MMP-2 gene expression in RPTCs, which was blocked by BAY11-7082.Conclusions: Our present study suggests the involvement of AGE-RAGE-induced, RAS-mediated MMP-2 activation in experimental DN. Blockade of AGE-RAGE axis by ramipril may protect against DN partly via suppression of MMP-2
Advanced Glycation End Product Interventions Reduce Diabetes-Accelerated Atherosclerosis
Advanced glycation end product (AGE) formation may contribute to the progression of atherosclerosis, particularly in diabetes. The present study explored atherosclerosis in streptozotocin-induced diabetic apolipoprotein E–deficient (apoE�/�) mice that were randomized (n � 20) to receive for 20 weeks no treatment, the AGE cross-link breaker ALT-711, or the inhibitor of AGE formation aminoguanidine (AG). A sixfold increase in plaque area with diabetes was attenuated by 30 % with ALT-711 and by 40 % in AG-treated mice. Regional distribution of plaque demonstrated no reduction in plaque area or complexity within the aortic arch with treatment, in contrast to the thoracic and abdominal aortas, where significant attenuation was seen. Diabetes-associated accumulation of AGEs in aorta
Targeting Methylglyoxal in Diabetic Kidney Disease Using the Mitochondria-Targeted Compound MitoGamide.
Diabetic kidney disease (DKD) remains the number one cause of end-stage renal disease in the western world. In experimental diabetes, mitochondrial dysfunction in the kidney precedes the development of DKD. Reactive 1,2-dicarbonyl compounds, such as methylglyoxal, are generated from sugars both endogenously during diabetes and exogenously during food processing. Methylglyoxal is thought to impair the mitochondrial function and may contribute to the pathogenesis of DKD. Here, we sought to target methylglyoxal within the mitochondria using MitoGamide, a mitochondria-targeted dicarbonyl scavenger, in an experimental model of diabetes. Male 6-week-old heterozygous Akita mice (C57BL/6-Ins2-Akita/J) or wildtype littermates were randomized to receive MitoGamide (10 mg/kg/day) or a vehicle by oral gavage for 16 weeks. MitoGamide did not alter the blood glucose control or body composition. Akita mice exhibited hallmarks of DKD including albuminuria, hyperfiltration, glomerulosclerosis, and renal fibrosis, however, after 16 weeks of treatment, MitoGamide did not substantially improve the renal phenotype. Complex-I-linked mitochondrial respiration was increased in the kidney of Akita mice which was unaffected by MitoGamide. Exploratory studies using transcriptomics identified that MitoGamide induced changes to olfactory signaling, immune system, respiratory electron transport, and post-translational protein modification pathways. These findings indicate that targeting methylglyoxal within the mitochondria using MitoGamide is not a valid therapeutic approach for DKD and that other mitochondrial targets or processes upstream should be the focus of therapy
Mapping Time-course Mitochondrial Adaptations in the Kidney in Experimental Diabetes
Abstract Oxidative phosphorylation drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homeostasis. In diabetic kidney disease, mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics, have not been previously documented. Here, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes. Our data reveal that changes in mitochondrial bioenergetics and dynamics precede the development of albuminuria and renal histological changes. Specifically, in early diabetes (4 weeks) a decrease in ATP content and mitochondrial fragmentation within proximal tubule epithelial cells of diabetic kidneys were clearly apparent, but no change urinary albumin excretion or glomerular morphology were evident at this time. By 8 weeks of diabetes, there was increased capacity for mitochondrial permeability transition (mPT) by pore opening, which persisted over time and correlated with mitochondrial hydrogen peroxide generation and glomerular damage. Late in diabetes, by week 16, tubular damage was evident with increased urinary Kidney injury molecule (Kim)-1 excretion, where an increase in Complex I-linked oxygen consumption rate, in the context of a decrease in kidney ATP, indicated mitochondrial uncoupling. Taken together, these data show that changes in mitochondrial bioenergetics and dynamics may precede the development of the renal lesion in diabetes, and this supports the hypothesis that mitochondrial dysfunction is a primary cause of diabetic kidney disease. Summary statement We identified that dysfunction of cellular power stations, mitochondria, may precede the development of kidney disease in diabetes. This suggests that mitochondrial dysfunction is a primary cause of diabetic nephropathy, which could be targeted to improve the burden of this disease. Short title: Mitochondrial adaptations in diabetic nephropath
Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes
Abstract Oxidative phosphorylation (OXPHOS) drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homoeostasis. In diabetic kidney disease (DKD), mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics have not been previously documented. In the present study, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes. Our data reveal that changes in mitochondrial bioenergetics and dynamics precede the development of albuminuria and renal histological changes. Specifically, in early diabetes (4 weeks), a decrease in ATP content and mitochondrial fragmentation within proximal tubule epithelial cells (PTECs) of diabetic kidneys were clearly apparent, but no changes in urinary albumin excretion or glomerular morphology were evident at this time. By 8 weeks of diabetes, there was increased capacity for mitochondrial permeability transition (mPT) by pore opening, which persisted over time and correlated with mitochondrial hydrogen peroxide (H 2 O 2 ) generation and glomerular damage. Late in diabetes, by week 16, tubular damage was evident with increased urinary kidney injury molecule-1 (KIM-1) excretion, where an increase in the Complex I-linked oxygen consumption rate (OCR), in the context of a decrease in kidney ATP , indicated mitochondrial uncoupling. Taken together, these data show that changes in mitochondrial bioenergetics and dynamics may precede the development of the renal lesion in diabetes, and this supports the hypothesis that mitochondrial dysfunction is a primary cause of DKD
Targeting methylglyoxal in diabetic kidney disease using the mitochondria-targeted compound MitoGamide
Diabetic kidney disease (DKD) remains the number one cause of end-stage renal disease in the western world. In experimental diabetes, mitochondrial dysfunction in the kidney precedes the development of DKD. Reactive 1,2-dicarbonyl compounds, such as methylglyoxal, are generated from sugars both endogenously during diabetes and exogenously during food processing. Methylglyoxal is thought to impair the mitochondrial function and may contribute to the pathogenesis of DKD. Here, we sought to target methylglyoxal within the mitochondria using MitoGamide, a mitochondria-targeted dicarbonyl scavenger, in an experimental model of diabetes. Male 6-week-old heterozygous Akita mice (C57BL/6-Ins2-Akita/J) or wildtype littermates were randomized to receive MitoGamide (10 mg/kg/day) or a vehicle by oral gavage for 16 weeks. MitoGamide did not alter the blood glucose control or body composition. Akita mice exhibited hallmarks of DKD including albuminuria, hyperfiltration, glomerulosclerosis, and renal fibrosis, however, after 16 weeks of treatment, MitoGamide did not substantially improve the renal phenotype. Complex-I-linked mitochondrial respiration was increased in the kidney of Akita mice which was unaffected by MitoGamide. Exploratory studies using transcriptomics identified that MitoGamide induced changes to olfactory signaling, immune system, respiratory electron transport, and post-translational protein modification pathways. These findings indicate that targeting methylglyoxal within the mitochondria using MitoGamide is not a valid therapeutic approach for DKD and that other mitochondrial targets or processes upstream should be the focus of therapy
Advanced glycation: how are we progressing to combat this web of sugar anomalies in diabetic nephropathy
Advanced glycation end products (AGEs) in diabetic nephropathy have been extensively researched over the last decade and are now firmly established as major players in this disease. The enigma remains the search for the ideal AGE inhibition therapy, which is a great challenge in the context of the structural diversity inherent to AGE chemistry. Certainly, there is a requirement to standardize measurements of circulating and tissue levels of AGEs and to characterize the pathogenic potential of specific AGE moieties. In order to develop more effective, targeted approaches to combat diabetic nephropathy, the mechanisms of action of selective AGE inhibitors and the inter-relationships of advanced glycation with other pathogenic pathways must be addressed