21 research outputs found

    Comparative study and relationship analysis between purine content, uric acid, superoxide dismutase, and growth traits in purebred and crossbred Thai native chickens

    Get PDF
    The objective was to compare and analyze the relationship between growth, purine content, uric acid, and superoxide dismutase (SOD) in purebred and crossbred Thai native chickens. A total of 300 Thai native chickens were divided into 3 groups. Group 1 was purebred Thai native chickens (100%TN), Group 2 was 50% Thai native chickens (50%TN), and Group 3 was 25% Thai native chickens (25%TN). Data included the body weight (BW), average daily gain (ADG), and breast circumference (BrC). At 6, 8, and 10 weeks of age, 10 chickens from each group were randomly euthanized to collect breast meat, liver, and blood samples to analyze the purine content consisting of total purine, adenine, guanine, xanthine, and hypoxanthine, and uric acid, in breast meat and liver and SOD in blood. A general linear model, Pearson correlation and principal component analysis were used to analyze the significant differences and relationship between variables. The results showed the 25%TN group had the highest growth traits at every age, while the 100%TN group had the lowest (p < 0.05). Consistent with the analysis results of purine values, purine content and uric acid in breast meat and liver and SOD in blood decreased with age (p < 0.05). The correlations between purine content (total purine, adenine, guanine, xanthine, and hypoxanthine) and growth traits (BW, ADG, and BrC) ranged from moderate negative to moderate positive (−0.542 to 0.253)(p < 0.05). The correlations between uric acid and growth traits (0.348–0.760) and SOD and growth traits (0.132–0.516) were low to moderate positive with significant differences (p < 0.05). The principal component plot, which highlighted three principal components (PC 1, PC 2, and PC 3), explained 86.44 and 86.53% of the total information in breast meat and liver for selecting animals for optimal balance of the variation in the growth traits, purine content, uric acid, and SOD. Although purebred Thai native chickens showed the lowest growth traits, purine content, uric acid, and SOD were also lowest compared to crossbred Thai native chickens. Therefore, the development of genetics in Thai native chickens to produce healthy food could be possible

    Effects of gelatin and oxytocin supplementation in a long-term semen extender on boar semen quality and fertility potential

    Get PDF
    Objective This study investigated the efficacy of different concentrations of gelatin supplementation in long-term semen extender on boar semen quality during storage for 10 days at 17°C. Additionally, oxytocin was added to stored semen to enhance fertility. Methods In Experiment 1, boar semen was collected, diluted with gelatin at concentrations between 0% and 2.5% (w/v) and mixed with a semen extender. Then, it was kept in a refrigerator at 17°C and stored for 10 days. In Experiment 2, the sperm quality was examined after adding 0, 5, and 10 IU oxytocin per artificial insemination dose to the most effective semen extender from Experiment 1 and placing it in a refrigerator at 17°C for 10 days. In Experiment 3, the fertility potential in terms of non-return rate and litter size was determined using the most effective solid-stored semen supplemented with oxytocin. Results The results indicated that sperm quality decreased with increasing storage time (p0.05). The non-return rate and litter size after insemination with semen supplemented with 1.5% gelatin and 10 IU of oxytocin after 8 to 10 days of storage were comparable to those of the control group (p>0.05). Conclusion A semen extender as a solid medium supplemented with 1.5% gelatin successfully preserved boar semen for a long storage duration. Treatment with oxytocin did not affect sperm quality. In addition, the fertility capacity using 1.5% gelatin with 10 IU oxytocin and stored for 8 to 10 days was acceptable and comparable to that of short-term storage

    Heat stress effects on the genetics of growth traits in Thai native chickens (Pradu Hang dum)

    Get PDF
    Objective The objective of this study was to investigate the effect of heat stress on the growth traits and genetic parameters of Thai native chickens. Methods A total of 16,487 records for growth traits of Thai native chickens between 2017 and 2022 were used in this study. Data included the body weight at birth, body weight at 4, 8, and 12 weeks of age (BW0, BW4, BW8, BW12), average daily gain during 0 to 4, 4 to 8, and 8 to 12 weeks of age (ADG0–4, ADG4–8, ADG8–12), absolute growth rate at birth, at 4, 8, and 12 weeks of age (AGR0, AGR4, AGR8, AGR12). The repeatability test day model used the reaction-norm procedure to analyze the threshold point of heat stress, rate of decline of growth traits, and genetic parameters. Results At temperature and humidity index (THI) of 76, Thai native chickens began to lose their growth traits, which was the onset of heat stress in this study. The estimated heritability, genetic correlation between animal and heat stress effect, and correlations between the intercept and slope of the permanent environmental effects were 0.27, −0.85, and −0.83 for BW, 0.17, −0.81, and −0.95 for ADG, 0.25, −0.61, and −0.83 for AGR, respectively. Male chickens are more affected by heat stress than female chickens with a greater reduction of BW, ADG, and AGR, values equal to −9.30, −0.23, −15.21 (in males) and −6.04, −0.21, −10.10 (in females) gram per 1 level increase of THI from the THI of 76. Conclusion The influence of thermal stress had a strong effect on the decline in growth traits and genetic parameters in Thai native chickens. This study indicated that genetic models used in conjunction with THI data are an effective method for the analysis and assessment of the effects of heat stress on the growth traits and genetics of native chickens

    Superovulatory responses based on ovarian sizes after superstimulation in Thai-Holstein crossbred dairy cows

    Get PDF
    This study was designed (1) to examine the relationship between ovary sides/sizes after superstimulation treatment and ovulatory responses in terms of large follicles, corpora lutea (CLs) numbers, and ovulation rate; and (2) to evaluate the coefficient of determination (R2) as a tool to predict the subsequent superovulatory responses by ovary sizes after superstimulation treatment in the Thai-Holstein crossbreed dairy cows. Data included 33 records from 12 superovulated Thai Holstein crossbreds. Cows were estrus synchronized on day 0 and superstimulated with 400 mg of FSH with decreasing doses twice daily for 4 days. After superovulatory treatment (day 9), the sizes of ovaries were measured and divided into 3 groups by quarters according to the ovarian sizes. Group A ( 1449 mm2) ovaries were 25% larger than group B ovaries (816–1449 mm2). On day 9 and 16, there were no significant differences in the average ovary area (p > 0.05). The numbers of large follicles and CLs of group B and C were greater than those of group A (p 0.05). The moderate R2 score between ovary size after superovulatory treatment and the numbers of dominant follicles and CLs were calculated (R2 = 0.445 and 0.370, p <0.05) while the beta coefficient (b-value) was positive for both observation parameters. In conclusion, the numbers of large follicles and CLs related to the size of ovaries after superovulation treatment. The moderate R2 score obtained in this study could be indicative of the limited possibility for using ovary size after superovulatory treatment for predicting superovulatory response

    Semen Quality Traits of Two Thai Native Chickens Producing a High and a Low of Semen Volumes

    No full text
    Semen quality traits such as semen volume, sperm motility, sperm concentration, pH, and color are very important, since they can determine the fertility potential of the semen. The objective of this study was to compare the semen quality traits of Thai Native chickens (Pradu Hang Dam and Chee) producing high and low semen volume. Semen was collected from 24 roosters (12 reps) and divided into two groups of roosters producing high semen volume (&gt;0.3 mL) and those producing a low amount of semen (&lt;0.3 mL). Fresh semen quality parameters (semen volume, sperm motility, viability, concentration, and pH) were measured and compared between groups. It was found that semen volume showed a positive correlation with sperm concentration, mass movement, motility, viability, and pH of fresh semen. There was no significant difference in fresh semen parameters between Pradu Hang Dam and Chee roosters with either high or low ejaculate semen, except for sperm concentration. Sperm concentration was significantly higher in Chee compared with Pradu Hang Dam in both high and low ejaculate semen. The semen quality parameters between groups of chickens producing high and low ejaculate semen were significantly different except for sperm viability. In conclusion, it was found that chickens producing high volumes of semen have better sperm quality than those producing a low semen volume. Therefore, these results provide a possible consideration that the amount of semen production among chickens can be used as a tool in selecting Thai native roosters for breeding

    Influence of Semen Collection Frequency and Seasonal Variations on Fresh and Frozen Semen Quality in Thai Native Roosters

    No full text
    This study aimed to determine the effects of the frequency of semen collection (once, twice, and thrice weekly) and seasonal variations on the fresh and frozen semen quality of Thai native roosters throughout the year. Data on temperature and humidity were collected and used to calculate the temperature&ndash;humidity index (THI). The average temperature and THI were lower in the winter than in the rainy season and the summer (p &lt; 0.05). In contrast, the average relative humidity was not different among the seasons but was higher in the rainy season (p &gt; 0.05). None of the fresh or frozen semen quality parameters were influenced by the frequency of semen collection, but the season did have an effect. The highest sperm concentration was obtained in the winter (p &lt; 0.05). In contrast, the lowest sperm concentration was found during the rainy season, which presented the highest humidity. Regarding the frozen semen quality, the highest malondialdehyde concentration and the lowest motility were found in the summer (p &lt; 0.05). In conclusion, semen collection can be conducted thrice per week for a consecutive year without affecting semen quality while maximizing sperm production. However, the highest sperm production was obtained in the winter, which is also a suitable season for producing semen for cryopreservation

    Comparative Study of Phenotypes and Genetics Related to the Growth Performance of Crossbred Thai Indigenous (KKU1 vs. KKU2) Chickens under Hot and Humid Conditions

    No full text
    To improve the body weight and growth performance traits of crossbred Thai indigenous chickens, phenotypic performance and genetic values were estimated. Crossbred Thai indigenous chickens, designated KKU1 and KKU2, were compared. The data included 1375 records of body weight (BW0, BW2, BW4, and BW16), breast circumference at 6 weeks of age (BrC6), and average daily gain (ADG0–2, ADG0–4, and ADG0–6). A multi-trait animal model with the average information-restricted maximum likelihood (AI-REML) was used to estimate the genetic parameters and breeding values. The results showed that the body weight and breast circumference traits (BW2, BW4, BW6, and BrC6) for the mixed sex KKU1 chickens were higher than for the KKU2 chickens (p p < 0.05). The survival rates were not different except at up to 6 weeks of age, when that of the KKU1 chickens was slightly lower. The specific combining ability, heritability, genetic and phenotypic correlations, and estimated breeding values showed that the KKU1 chickens had better genetics than the KKU2 chickens. In conclusion, KKU1 chickens are suitable for development as crossbred Thai indigenous chickens for enhanced growth performance and for commercial use

    Semen Quality Traits of Two Thai Native Chickens Producing a High and a Low of Semen Volumes

    No full text
    Semen quality traits such as semen volume, sperm motility, sperm concentration, pH, and color are very important, since they can determine the fertility potential of the semen. The objective of this study was to compare the semen quality traits of Thai Native chickens (Pradu Hang Dam and Chee) producing high and low semen volume. Semen was collected from 24 roosters (12 reps) and divided into two groups of roosters producing high semen volume (>0.3 mL) and those producing a low amount of semen (<0.3 mL). Fresh semen quality parameters (semen volume, sperm motility, viability, concentration, and pH) were measured and compared between groups. It was found that semen volume showed a positive correlation with sperm concentration, mass movement, motility, viability, and pH of fresh semen. There was no significant difference in fresh semen parameters between Pradu Hang Dam and Chee roosters with either high or low ejaculate semen, except for sperm concentration. Sperm concentration was significantly higher in Chee compared with Pradu Hang Dam in both high and low ejaculate semen. The semen quality parameters between groups of chickens producing high and low ejaculate semen were significantly different except for sperm viability. In conclusion, it was found that chickens producing high volumes of semen have better sperm quality than those producing a low semen volume. Therefore, these results provide a possible consideration that the amount of semen production among chickens can be used as a tool in selecting Thai native roosters for breeding

    Chronological Reorganization of Microtubules, Actin Microfilaments, and Chromatin during the First Cell Cycle in Swamp Buffalo ( Bubalus bubalis

    Get PDF
    This paper aimed to study the dynamics of early embryonic development, in terms of redistribution of cytoskeleton (microtubules, actin microfilaments) and chromatin configurations during the first cell cycle in swamp buffalo embryos. Oocytes were matured and fertilized in vitro, and they were fixed at various time points after IVF. At 6 h after IVF, 44.4% matured oocytes were penetrated by spermatozoa. Partial ZP digestion, however, did not improve fertilization rate compared to control (P > .05). At 12 h after IVF, the fertilized oocytes progressed to the second meiotic division and formed the female pronucleus simultaneously with the paternal chromatin continued to decondense. A sperm aster was observed radiating from the base of the decondensing sperm head. At 18 h after IVF, most presumptive zygotes had reached the pronuclear stage. The sperm aster was concurrently enlarged to assist the migration and apposition of pronuclei. Cell cleavage was facilitated by microfilaments and firstly observed by 30 h after IVF. In conclusion, the cytoskeleton actively involves with the process of fertilization and cleavage in swamp buffalo oocytes. The centrosomal material is paternally inherited. Fertilization failure is predominantly caused by poor sperm penetration. However, partial digestion of ZP did not improve fertilization rate

    Genetic Comparisons of Body Weight, Average Daily Gain, and Breast Circumference between Slow-Growing Thai Native Chickens (Pradu Hang dum) Raised On-Site Farm and On-Station

    No full text
    To ensure that any new technology developed within an experimental station is appropriate to the community’s needs and compatible with the existing systems, on-site farm research is an important component in examining the effectiveness of agricultural research. The present study examined the growth performance and genetics of Thai native chickens under conditions typically experienced by farmers on smallholder farms (on-site farms) compared with at an experimental unit (on-station). There were 1694 Thai native chickens (Pradu Hang dum) used in this experiment, and they were divided into 613 chickens for the on-station and 1081 chickens for the on-site farm experiments. The individual chicken data included the birth weight (BW0) and body weight at 4, 8, 12, and 16 weeks of age (BW4, BW8, BW12, and BW16, respectively), ADG from 0–4, 4–8, 8–12, 12–16 weeks of age (ADG0–4, ADG4–8, ADG8–12, ADG12–16, respectively), and breast circumference at 8, 12, and 16 weeks of age (BrC8, BrC12, BrC16, respectively). A multiple traits animal model and a selection index were used to estimate the variance components, genetic parameters, and breeding values of growth traits. The results showed that the body weight, average daily gain, and breast circumference at 8, 12, and 16 weeks of age of Thai native chickens raised on-station were higher than those raised on-site at the farm among mixed-sex and sex-segregated chickens, while the birth weight and body weight at four weeks of age (BW0 and BW4) and ADG from 0–4 weeks of age (ADG0–4) were not significantly different (p > 0.05). The heritability estimates of body weight, average daily gain, and breast circumference in the chickens raised at the on-site farm and on-station were moderate to high, with on-station values slightly higher than on-site farm values. The heritability estimates of body weight were 0.236 to 0.499 for the on-site farm, and 0.291 to 0.499 for on-station. For average daily gain, the heritability estimates were 0.274 to 0.283 for the on-site farm and 0.298 to 0.313 for on-station; meanwhile, and for breast circumference, the heritability estimates were 0.204 to 0.268 for the on-site farm and 0.278 to 0.296 for on-station. Both phenotypic and genetic correlations among and between growth traits were positive and ranged from low to high values. The top 20% of the estimated breeding values and selection indices in the on-site farm and on-station experiments showed that the body weight at eight weeks of age (BW8), ADG from 4–8 weeks of age (ADG4–8), and breast circumference at eight weeks of age (BrC8) should be used as selection criteria for Thai native chicken breeding programs. In conclusion, the genetic parameters and breeding values in on-station experiments showed that the breeding program by selection index for improving growth performance is valid. Therefore, to implement such a breeding program in an on-site farm, an intensive or semi-intensive farm system should be considered to minimize the effect of genotype-environment interaction
    corecore