58 research outputs found

    Influence of the sulphurization time on the morphological, chemical, structural and electrical properties of Cu2ZnSnS4 polycrystalline thin films

    Get PDF
    The effects of the sulphurization annealing time on the morphological, chemical, structural and electrical properties of CZTS thin films were investigated by scanning electron microscopy, X-ray energy dispersive spectroscopy, Hall effect and electrical conductivity measurements in samples annealed during different time intervals. The increase of the annealing time was found to improve the chemical composition of the samples and to, slightly, increase the crystallite size. Small amounts of Na were measured in the samples. However, the concentration of Na does not increase significantly with the annealing time and should not modify the characteristics of the CZTS thin films. It was also found that at high temperature the electrical conductivity is dominated by thermal emission of carriers over the inter-grain potential barriers. As the temperature decreases different hopping conduction mechanisms start to dominate. At first with nearest-neighbour hopping and successively changing to variable range hopping conduction with a crossover from Mott and Efros–Shklovskii behavior. The electrical conductivity, the concentration of free holes, acceptors and donors, traps0 density at the grain boundaries and the grain potential barriers height were found to increase with the annealing time. However, a significant drop in the compensation ratio from 0.8 to 0.5 was also detected.info:eu-repo/semantics/publishedVersio

    From movement purpose to perceptive spatial mobility prediction

    Get PDF
    A major limiting factor for prediction algorithms is the forecast of new or never before-visited locations. Conventional personal models utterly relying on personal location data perform poorly when it comes to discoveries of new regions. The reason is explained by the prediction relying only on previously visited/seen (or known) locations. As a side effect, locations that were never visited before (or explorations) by a user cause disturbance to known location's prediction. Besides, such explorations cannot be accurately predicted. We claim the tackling of such limitation first requires identifying the purpose of the next probable movement. In this context, we propose a novel framework for adjusting prediction resolution when probable explorations are going to happen. As recently demonstrated [3, 15], there exist regularities in returning and exploring visits. Moreover, the geographical occurrences of explorations are far from being random in a coarser-grained spatial resolution. Exploiting these properties, instead of directly predicting a user's next location, we design a two-step predictive framework. First, we infer an individual's next type of transition: (i) a return, i.e., a visit to a previously known location, or (ii) an exploration, i.e., a discovery of a new place. Next, we predict the next location or the next coarse-grained zone depending on the inferred type of movement. We conduct extensive experiments on three real-world GPS mobility traces. The results demonstrate substantial improvements in the accuracy of prediction by dint of fruitfully forecasting coarse-grained zones used for exploration activities. To the best of our knowledge, we are the first to propose a framework solely based on personal location data to tackle the prediction of visits to new places.Accepted manuscrip

    Zero temperature phases of the frustrated J1-J2 antiferromagnetic spin-1/2 Heisenberg model on a simple cubic lattice

    Full text link
    At zero temperature magnetic phases of the quantum spin-1/2 Heisenberg antiferromagnet on a simple cubic lattice with competing first and second neighbor exchanges (J1 and J2) is investigated using the non-linear spin wave theory. We find existence of two phases: a two sublattice Neel phase for small J2 (AF), and a collinear antiferromagnetic phase at large J2 (CAF). We obtain the sublattice magnetizations and ground state energies for the two phases and find that there exists a first order phase transition from the AF-phase to the CAF-phase at the critical transition point, pc = 0.28. Our results for the value of pc are in excellent agreement with results from Monte-Carlo simulations and variational spin wave theory. We also show that the quartic 1/S corrections due spin-wave interactions enhance the sublattice magnetization in both the phases which causes the intermediate paramagnetic phase predicted from linear spin wave theory to disappear.Comment: 19 pages, 4 figures, Fig. 1b modified, Appendix B text modifie

    Three-Dimensional Mapping of the Dark Matter

    Full text link
    We study the prospects for three-dimensional mapping of the dark matter to high redshift through the shearing of faint galaxies images at multiple distances by gravitational lensing. Such maps could provide invaluable information on the nature of the dark energy and dark matter. While in principle well-posed, mapping by direct inversion introduces exceedingly large, but usefully correlated noise into the reconstruction. By carefully propagating the noise covariance, we show that lensing contains substantial information, both direct and statistical, on the large-scale radial evolution of the density field. This information can be efficiently distilled into low-order signal-to-noise eigenmodes which may be used to compress the data by over an order of magnitude. Such compression will be useful for the statistical analysis of future large data sets. The reconstructed map also contains useful information on the localization of individual massive dark matter halos, and hence the dark energy from halo number counts, but its extraction depends strongly on prior assumptions. We outline a procedure for maximum entropy and point-source regularization of the maps that can identify alternate reconstructions.Comment: 11 pages, 5 figures, submitted to PR

    Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box

    Full text link
    We present a method for measuring the cosmic matter budget without assumptions about speculative Early Universe physics, and for measuring the primordial power spectrum P*(k) non-parametrically, either by combining CMB and LSS information or by using CMB polarization. Our method complements currently fashionable ``black box'' cosmological parameter analysis, constraining cosmological models in a more physically intuitive fashion by mapping measurements of CMB, weak lensing and cluster abundance into k-space, where they can be directly compared with each other and with galaxy and Lyman alpha forest clustering. Including the new CBI results, we find that CMB measurements of P(k) overlap with those from 2dF galaxy clustering by over an order of magnitude in scale, and even overlap with weak lensing measurements. We describe how our approach can be used to raise the ambition level beyond cosmological parameter fitting as data improves, testing rather than assuming the underlying physics.Comment: Replaced to match accepted PRD version. Refs added. Combined CMB data and window functions at http://www.hep.upenn.edu/~max/pwindows.html or from [email protected]. 18 figs, 19 journal page
    corecore