5,230 research outputs found
The role of printed electronics and related technologies in the development of smart connected products
The emergence of novel materials with flexible and stretchable characteristics, and the use of new processing technologies, have allowed for the development of new connected devices and applications. Using printed electronics, traditional electronic elements are being combined with flexible components and allowing for the development of new smart connected products. As a result, devices that are capable of sensing, actuating, and communicating remotely while being low-cost, lightweight, conformable, and easily customizable are already being developed. Combined with the expansion of the Internet of Things, artificial intelligence, and encryption algorithms, the overall attractiveness of these technologies has prompted new applications to appear in almost every sector. The exponential technological development is currently allowing for the ‘smartification’ of cities, manufacturing, healthcare, agriculture, logistics, among others. In this review article, the steps towards this transition are approached, starting from the conceptualization of smart connected products and their main markets. The manufacturing technologies are then presented, with focus on printing-based ones, compatible with organic materials. Finally, each one of the printable components is presented and some applications are discussed.This work has been supported by NORTE-06-3559- FSE-000018, integrated in the invitation NORTE59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF), and by the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, financed by FCT—Fundação para a Ciência e Tecnologia, Portugal
X-ray scattering studies on multiphasic polymer systems
The scope of the present chapter had to be limited to some recent studies on the application of synchrotron WAXS and SAXS in three particular multicomponent and multiphase polymer systems. The first system comprises materials that became known as microfibrillar reinforced composites (MFC) produced from oriented blends of thermoplastic semicrystalline polymers by conventional processing techniques. These materials belong to fiber-reinforced composites that have many important engineering applications but are notoriously difficult to study.
As a second material system, the structure development during processing of an immiscible polymer blend of polypropylene (PP) and polystyrene (PS) was investigated by X-ray scattering techniques. Structure formation in polymers blends has been widely investigated in the last years, mainly in terms of the development of the size, shape, and orientation of the dispersed component under flow deformation. Further, the structure evolution and damage during stretching in the solid state of polymers blends is much less researched topic. Complementing, this second study, the structure evolution of the PP/PS blend was investigated by time resolved x-ray scattering in a synchrotron source.
Finally, the third case reveals investigations on the structure of polymer nanocomposites developed during processing and also during stretching. Polymer nanocomposites are a recent class of materials, and very few studies have been published on the structure development in them.This work was supported by DESY and the European Commission under HASYLAB Projects 18DESYD-II-05-101 EC, DESY-D-II-07-011 EC and the FP6 contract RII3-CT-2004-506008 (IA-SFS). This work was also supported by FCT –Portuguese Foundation for Science and Technology through projectPOCTI/CTM/46940/2002 (MICROTEST) and POCI/CTM/57358/2004 (NANOFIBCO)
Intermingled basins in coupled Lorenz systems
We consider a system of two identical linearly coupled Lorenz oscillators,
presenting synchro- nization of chaotic motion for a specified range of the
coupling strength. We verify the existence of global synchronization and
antisynchronization attractors with intermingled basins of attraction, such
that the basin of one attractor is riddled with holes belonging to the basin of
the other attractor and vice versa. We investigated this phenomenon by
verifying the fulfillment of the mathematical requirements for intermingled
basins, and also obtained scaling laws that characterize quantitatively the
riddling of both basins for this system
Characterization of microstructured multiwalled carbon nanotube/polydimethylsiloxane composites for piezoresistive sensing applications
Technological advancements in the field of flexible and printed electronics are creating a need for large-area sensors that can be embedded over different types of surfaces. Such sensors can be used to monitor physical signals over flexible, curved, or soft devices. Hence, it is herein proposed, a formulation to produce piezoresistive multiwalled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) composites with tunable electric properties for pressure sensing purposes. The composite is obtained through few manufacturing steps, avoiding the use of hazardous solvents. Different weight percentages of MWCNT dispersed in PDMS are evaluated and the results evidence that using 3.0 wt% of infill is sufficient to obtain highly sensitive sensors. To enhance the dispersion of the MWCNT and add microstructure to the composite, a system composed of a surfactant and foaming agent is used. Finally, pressure sensing units and arrays are printed and tested. The sensors present fast response, low hysteresis, repeatability, and a sensing range of 0–160 kPa. The composite is more sensitive to lower pressure and a maximum sensitivity of 8.0% kPa−1 is achieved for porous composites at pressure <10 kPa. Thanks to these characteristics, the sensors are successfully used in the development of a pressure sensing array and heartbeat sensor for proof of concept.This work has been supported by NORTE-06-3559-FSE-000018, integrated in the invitation NORTE-59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF), and by the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, financed by FCT—Fundação para a Ciência e Tecnologia, Portugal
A review on materials and technologies for organic large-area electronics
New and innovative applications in the field of electronics are rapidly emerging. Such applications often require flexible or stretchable substrates, lightweight and transparent materials, and design freedom. This paper offers a complete overview concerning flexible electronics manufacturing, focusing on the materials and technologies that have been recently developed. This combination of materials and technologies aims to fuel a fast, economical, and environmentally sustainable transition from the conventional to the novel and highly customizable electronics. Organic conductors, semiconductors, and dielectrics have recently gathered lots of attention since they are compatible with printing technologies, and can be easily spread over large and flexible substrates. These printing technologies are usually simple and fast procedures, which rely on low-cost and recycle-friendly materials, intended for large-scale fabrication. Overall, even though organic large-area electronics manufacturing is still in its early stages of development, it is a field with tremendous potential that holds promise to revolutionize the way products are designed, developed, and processed from the factory premises to the consumers’ hands. Besides, this technology is highly versatile and can be applied to a large array of sectors such as automotive, medical, home design, industrial, agricultural, among others.This work was supported by NORTE-06-3559-FSE-000018, integrated in the invitation NORTE-59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF), and by the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, financed by FCT – Fundação para a Ciência e Tecnologia, Portugal. The authors also thank Prof. LuÃs A. Rocha for his support and guidance during the writing of this review work
- …