20 research outputs found

    Does the Spine Surgeon’s Experience Affect Fracture Classification, Assessment of Stability, and Treatment Plan in Thoracolumbar Injuries?

    Get PDF
    Study Design: Prospective survey-based study. Objectives: The AO Spine thoracolumbar injury classification has been shown to have good reproducibility among clinicians. However, the influence of spine surgeons’ clinical experience on fracture classification, stability assessment, and decision on management based on this classification has not been studied. Furthermore, the usefulness of varying imaging modalities including radiographs, computed tomography (CT) and magnetic resonance imaging (MRI) in the decision process was also studied. Methods: Forty-one spine surgeons from different regions, acquainted with the AOSpine classification system, were provided with 30 thoracolumbar fractures in a 3-step assessment: first radiographs, followed by CT and MRI. Surgeons classified the fracture, evaluated stability, chose management, and identified reasons for any changes. The surgeons were divided into 2 groups based on years of clinical experience as \u3c10 years (n = 12) and \u3e10 years (n = 29). Results: There were no significant differences between the 2 groups in correctly classifying A1, B2, and C type fractures. Surgeons with less experience hadmore correct diagnosis in classifyingA3 (47.2% vs 38.5%in step 1, 73.6% vs 60.3% in step 2 and 77.8% vs 65.5% in step 3), A4 (16.7% vs 24.1% in step 1, 72.9% vs 57.8% in step 2 and 70.8% vs 56.0%in step3) and B1 injuries (31.9% vs 20.7% in step 1, 41.7% vs 36.8% in step 2 and 38.9% vs 33.9% in step 3). In the assessment of fracture stability and decision on treatment, the less and more experienced surgeons performed equally. The selection of a particular treatment plan varied in all subtypes except in A1 and C type injuries. Conclusion: Surgeons’ experience did not significantly affect overall fracture classification, evaluating stability and planning the treatment. Surgeons with less experience had a higher percentage of correct classification in A3 and A4 injuries. Despite variations between them in classification, the assessment of overall stability and management decisions were similar between the 2 groups. © The Author(s) 2017

    The Development of a Universally Accepted Sacral Fracture Classification: A Survey of AOSpine and AOTrauma Members.

    Get PDF
    Study Design Survey study. Objective To determine the global perspective on controversial aspects of sacral fracture classifications. Methods While developing the AOSpine Sacral Injury Classification System, a survey was sent to all members of AOSpine and AOTrauma. The survey asked four yes-or-no questions to help determine the best way to handle controversial aspects of sacral fractures in future classifications. Chi-square tests were initially used to compare surgeons\u27 answers to the four key questions of the survey, and then the data was modeled through multivariable logistic regression analysis. Results A total of 474 surgeons answered all questions in the survey. Overall 86.9% of respondents felt that the proposed hierarchical nature of injuries was appropriate, and 77.8% of respondents agreed that that the risk of neurologic injury is highest in a vertical fracture through the foramen. Almost 80% of respondents felt that the separation of injuries based on the integrity of L5-S1 facet was appropriate, and 83.8% of surgeons agreed that a nondisplaced sacral U fracture is a clinically relevant entity. Conclusion This study determines the global perspective on controversial areas in the injury patterns of sacral fractures and demonstrates that the development of a comprehensive and universally accepted sacral classification is possible

    Sacral Fractures and Associated Injuries.

    Get PDF
    STUDY DESIGN: Literature review. OBJECTIVE: The aim of this review is to describe the injuries associated with sacral fractures and to analyze their impact on patient outcome. METHODS: A comprehensive narrative review of the literature was performed to identify the injuries associated with sacral fractures. RESULTS: Sacral fractures are uncommon injuries that result from high-energy trauma, and that, due to their rarity, are frequently underdiagnosed and mistreated. Only 5% of sacral fractures occur in isolation. Injuries most often associated with sacral fractures include neurologic injuries (present in up to 50% of sacral fractures), pelvic ring disruptions, hip and lumbar spine fractures, active pelvic/ abdominal bleeding and the presence of an open fracture or significant soft tissue injury. Diagnosis of pelvic ring fractures and fractures extending to the lumbar spine are key factors for the appropriate management of sacral fractures. Importantly, associated systemic (cranial, thoracic, and abdominopelvic) or musculoskeletal injuries should be promptly assessed and addressed. These associated injuries often dictate the management and eventual outcome of sacral fractures and, therefore, any treatment algorithm should take them into consideration. CONCLUSIONS: Sacral fractures are complex in nature and often associated with other often-missed injuries. This review summarizes the most relevant associated injuries in sacral fractures and discusses on their appropriate management

    Toward Shared Decision-Making in Degenerative Cervical Myelopathy: Protocol for a Mixed Methods Study

    Get PDF
    BACKGROUND Health care decisions are a critical determinant in the evolution of chronic illness. In shared decision-making (SDM), patients and clinicians work collaboratively to reach evidence-based health decisions that align with individual circumstances, values, and preferences. This personalized approach to clinical care likely has substantial benefits in the oversight of degenerative cervical myelopathy (DCM), a type of nontraumatic spinal cord injury. Its chronicity, heterogeneous clinical presentation, complex management, and variable disease course engenders an imperative for a patient-centric approach that accounts for each patient's unique needs and priorities. Inadequate patient knowledge about the condition and an incomplete understanding of the critical decision points that arise during the course of care currently hinder the fruitful participation of health care providers and patients in SDM. This study protocol presents the rationale for deploying SDM for DCM and delineates the groundwork required to achieve this. OBJECTIVE The study's primary outcome is the development of a comprehensive checklist to be implemented upon diagnosis that provides patients with essential information necessary to support their informed decision-making. This is known as a core information set (CIS). The secondary outcome is the creation of a detailed process map that provides a diagrammatic representation of the global care workflows and cognitive processes involved in DCM care. Characterizing the critical decision points along a patient's journey will allow for an effective exploration of SDM tools for routine clinical practice to enhance patient-centered care and improve clinical outcomes. METHODS Both CISs and process maps are coproduced iteratively through a collaborative process involving the input and consensus of key stakeholders. This will be facilitated by Myelopathy.org, a global DCM charity, through its Research Objectives and Common Data Elements for Degenerative Cervical Myelopathy community. To develop the CIS, a 3-round, web-based Delphi process will be used, starting with a baseline list of information items derived from a recent scoping review of educational materials in DCM, patient interviews, and a qualitative survey of professionals. A priori criteria for achieving consensus are specified. The process map will be developed iteratively using semistructured interviews with patients and professionals and validated by key stakeholders. RESULTS Recruitment for the Delphi consensus study began in April 2023. The pilot-testing of process map interview participants started simultaneously, with the formulation of an initial baseline map underway. CONCLUSIONS This protocol marks the first attempt to provide a starting point for investigating SDM in DCM. The primary work centers on developing an educational tool for use in diagnosis to enable enhanced onward decision-making. The wider objective is to aid stakeholders in developing SDM tools by identifying critical decision junctures in DCM care. Through these approaches, we aim to provide an exhaustive launchpad for formulating SDM tools in the wider DCM community. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/46809

    Establishing the Injury Severity of Thoracolumbar Trauma : Confirmation of the Hierarchical Structure of the AOSpine Thoracolumbar Spine Injury Classification System

    No full text
    Study Design. Survey of spine surgeons. Objective. To develop a validated regional and global injury severity scoring system for thoracolumbar trauma. Summary of Background Data. The AOSpine Thoracolumbar Spine Injury Classification System was recently published and combines elements of both the Magerl system and the Thoracolumbar Injury Classification System; however, the injury severity of each fracture has yet to be established. Methods. A survey was sent to 100 AOSpine members from all 6 AO regions of the world (North America, South America, Europe, Africa, Asia, and the Middle East). Each respondent was asked to numerically grade the severity of each variable of the AOSpine Thoracolumbar Spine Injury Classification System including the morphology, neurological grade, and patient specific modifiers. A grade of zero was considered to be not severe at all, and a grade of 100 was the most severe injury possible. Results. Seventy-four AOSpine surgeons from all 6 AO regions of the world numerically graded the severity of each variable of the AOSpine Thoracolumbar Spine Injury Classification System to establish the injury severity score. The reported fracture severity increased significantly (P <0.0001) as the subtypes of fracture type A and type B increased, and a significant difference (P <0.0001) in severity was established for burst fractures with involvement of 2 versus 1 endplates. Finally, no regional or experiential difference in severity or classification was identified. Conclusion. Development of a globally applicable injury severity scoring system for thoracolumbar trauma is possible. This study demonstrates no regional or experiential difference in perceived severity or thoracolumbar spine trauma. The AOSpine Thoracolumbar Spine Injury Classification System provides a logical approach to assessing these injuries and enables rational strategies for treatment

    The selection of core International Classification of Functioning, Disability, and Health (ICF) categories for patient-reported outcome measurement in spine trauma patients-results of an international consensus process

    No full text
    BACKGROUND CONTEXT: There is no outcome instrument specifically designed and validated for spine trauma patients without complete paralysis, which makes it difficult to compare outcomes of different treatments of the spinal column injury within and between studies. PURPOSE: The paper aimed to report on the evidence-based consensus process that resulted in the selection of core International Classification of Functioning, Disability, and Health (ICF) categories, as well as the response scale for use in a universal patient-reported outcome measure for patients with traumatic spinal column injury. STUDY DESIGN/SETTING: The study used a formal decision-making and consensus process. PATIENT SAMPLE: The sample includes patients with a primary diagnosis of traumatic spinal column injury, excluding completely paralyzed and polytrauma patients. OUTCOME MEASURES: The wide array of function and health status of patients with traumatic spinal column injury was explored through the identification of all potentially meaningful ICF categories. METHODS: A formal decision-making and consensus process integrated evidence from four preparatory studies. Three studies aimed to identify relevant ICF categories from three different perspectives. The research perspective was covered by a systematic literature review identifying outcome measures focusing on the functioning and health of spine trauma patients. The expert perspective was explored through an international web-based survey among spine surgeons from the five AOSpine International world regions. The patient perspective was investigated in an international empirical study. A fourth study investigated various response scales for their potential use in the future universal outcome instrument. This work was supported by AOSpine. AOSpine is a clinical division of the AO Foundation, an independent medically guided non-profit organization. The AOSpine Knowledge Forums are pathology-focused working groups acting on behalf of AOSpine in their domain of scientific expertise. RESULTS: Combining the results of the preparatory studies, the list of ICF categories presented at the consensus conference included 159 different ICF categories. Based on voting and discussion, 11 experts from 6 countries selected a total of 25 ICF categories as core categories for patient-reported outcome measurement in adult traumatic spinal column injury patients (9 body functions, 14 activities and participation, and 2 environmental factors). The experts also agreed to use the Numeric Rating Scale 0-100 as response scale in the future universal outcome instrument. CONCLUSIONS: A formal consensus process integrating evidence and expert opinion led to a set of 25 core ICF categories for patient-reported outcome measurement in adult traumatic spinal column injury patients, as well as the response scale for use in the future universal disease-specific outcome instrument. The adopted core ICF categories could also serve as a benchmark for assessing the content validity of existing and future outcome instruments used in this specific patient population. (C) 2016 Elsevier Inc. All rights reserved

    Toward Developing a Specific Outcome Instrument for Spine Trauma : An Empirical Cross-sectional Multicenter ICF-Based Study by AOSpine Knowledge Forum Trauma

    No full text
    STUDY DESIGN: Empirical cross-sectional multicenter study. OBJECTIVE: To identify the most commonly experienced problems by patients with traumatic spinal column injuries, excluding patients with complete paralysis. SUMMARY OF BACKGROUND DATA: There is no disease or condition-specific outcome instrument available that is designed or validated for patients with spine trauma, contributing to the present lack of consensus and ongoing controversies in the optimal treatment and evaluation of many types of spine injuries. Therefore, AOSpine Knowledge Forum Trauma started a project to develop such an instrument using the International Classification of Functioning, Disability and Health (ICF) as its basis. METHODS: Patients with traumatic spinal column injuries, within 13 months after discharge from hospital were recruited from 9 trauma centers in 7 countries, representing 4 AOSpine International world regions. Health professionals collected the data using the general ICF Checklist. The responses were analyzed using frequency analysis. Possible differences between the world regions and also between the subgroups of potential modifiers were analyzed using descriptive statistics and Fisher exact test. RESULTS: In total, 187 patients were enrolled. A total of 38 (29.7%) ICF categories were identified as relevant for at least 20% of the patients. Categories experienced as a difficulty/impairment were most frequently related to activities and participation (n = 15), followed by body functions (n = 6), and body structures (n = 5). Furthermore, 12 environmental factors were considered to be a facilitator in at least 20% of the patients. CONCLUSION: Of 128 ICF categories of the general ICF Checklist, 38 ICF categories were identified as relevant. Loss of functioning and limitations in daily living seem to be more relevant for patients with traumatic spinal column injuries rather than pain during this time frame. This study creates an evidence base to define a core set of ICF categories for outcome measurement in adult spine trauma patients. LEVEL OF EVIDENCE: 4

    The thoracolumbar AOSpine injury score

    No full text
    Study Design: Survey of 100 worldwide spine surgeons. Objective: To develop a spine injury score for the AOSpine Thoracolumbar Spine Injury Classification System. Methods: Each respondent was asked to numerically grade the severity of each variable of the AOSpine Thoracolumbar Spine Injury Classification System. Using the results, as well as limited input from the AOSpine Trauma Knowledge Forum, the Thoracolumbar AOSpine Injury Score was developed. Results: Beginning with 1 point for A1, groups A, B, and C were consecutively awarded an additional point (A1, 1 point; A2, 2 points; A3, 3 points); however, because of a significant increase in the severity between A3 and A4 and because the severity of A4 and B1 was similar, both A4 and B1 were awarded 5 points. An uneven stepwise increase in severity moving from N0 to N4, with a substantial increase in severity between N2 (nerve root injury with radicular symptoms) and N3 (incomplete spinal cord injury) injuries, was identified. Hence, each grade of neurologic injury was progressively given an additional point starting with 0 points for N0, and the substantial difference in severity between N2 and N3 injuries was recognized by elevating N3 to 4 points. Finally, 1 point was awarded to the M1 modifier (indeterminate posterolateral ligamentous complex injury). Conclusion: The Thoracolumbar AOSpine Injury Score is an easy-to-use, data-driven metric that will allow for the development of a surgical algorithm to accompany the AOSpine Thoracolumbar Spine Injury Classification System

    AOSpine subaxial cervical spine injury classification system

    No full text
    Purpose: This project describes a morphology-based subaxial cervical spine traumatic injury classification system. Using the same approach as the thoracolumbar system, the goal was to develop a comprehensive yet simple classification system with high intra- and interobserver reliability to be used for clinical and research purposes. Methods: A subaxial cervical spine injury classification system was developed using a consensus process among clinical experts. All investigators were required to successfully grade 10 cases to demonstrate comprehension of the system before grading 30 additional cases on two occasions, 1 month apart. Kappa coefficients (Îș) were calculated for intraobserver and interobserver reliability. Results: The classification system is based on three injury morphology types similar to the TL system: compression injuries (A), tension band injuries (B), and translational injuries (C), with additional descriptions for facet injuries, as well as patient-specific modifiers and neurologic status. Intraobserver and interobserver reliability was substantial for all injury subtypes (Îș = 0.75 and 0.64, respectively). Conclusions: The AOSpine subaxial cervical spine injury classification system demonstrated substantial reliability in this initial assessment, and could be a valuable tool for communication, patient care and for research purposes
    corecore