7 research outputs found

    Energy and system-size dependence of the chiral magnetic effect

    Get PDF
    The energy dependence of the local and violation in Au+Au and Cu+Cu collisions in a large energy range is estimated within a simple phenomenological model. It is expected that at LHC the chiral magnetic effect will be about 20 times weaker than at RHIC. At lower energy range, covered by the low-energy scan at RHIC and future NICA/FAIR facilities, the created magnetic field strength and energy density of deconfined matter are rather high providing necessary conditions for the chiral magnetic effect. However, the particular model for the chiral magnetic effect predicts that this effect should vanish sharply at energy somewhere above the top SPS one. To elucidate CME background effects the Hadron-String-Dynamics (HSD) transport model including electromagnetic fields is put forward. Importance of new planning experiments at LHC and for the low-energy RHIC scan program is emphasized

    Model for hypernucleus production in heavy ion collisions

    Full text link
    We estimate the production cross sections of hypernuclei in projectile like fragment (PLF) in heavy ion collisions. The discussed scenario for the formation cross section of hypernucleus is: (a) Lambda particles are produced in the participant region but have a considerable rapidity spread and (b) Lambda with rapidity close to that of the PLF and total momentum (in the rest system of PLF) up to Fermi motion can then be trapped and produce hypernuclei. The process (a) is considered here within Heavy Ion Jet Interacting Generator HIJING-BBbar model and the process (b) in the canonical thermodynamic model (CTM). We estimate the production cross-sections for light hypernuclei for C + C at 3.7 GeV total nucleon-nucleon center of mass energy and for Ne+Ne and Ar+Ar collisions at 5.0 GeV. By taking into account explicitly the impact parameter dependence of the colliding systems, it is found that the cross section is different from that predicted by the coalescence model and large discrepancy is obtained for 6_He and 9_Be hypernuclei.Comment: 9 pages, 4 figures, 3 tables, revtex4, added reference

    Parton/hadron dynamics in heavy-ion collisions at FAIR energies

    No full text
    Recent STAR data for the directed flow of protons, antiprotons and charged pions obtained within the beam energy scan program are analyzed within the Parton-Hadron-String-Dynamics (PHSD/HSD) transport models. Both versions of the kinetic approach are used to clarify the role of partonic degrees of freedom. The PHSD results, simulating a partonic phase and its coexistence with a hadronic one, are roughly consistent with the STAR data. Generally, the semi-qualitative agreement between the measured data and model results supports the idea of a crossover type of quark-hadron transition which softens the nuclear EoS but shows no indication of a first-order phase transition. Furthermore, the directed flow of kaons and antikaons is evaluated in the PHSD/HSD approachesfrom √sNN ≈ 3 - 200 GeV which shows a high sensitivity to hadronic potentials in the FAIR/NICA energy regime √sNN ≤ 8 GeV
    corecore