4 research outputs found
Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors
We report on the observation of a non-uniform dark count rate in
Superconducting Nanowire Single Photon Detectors (SNSPDs), specifically
focusing on an afterpulsing effect present when the SNSPD is operated at a high
bias current regime. The afterpulsing exists for real detection events
(triggered by input photons) as well as for dark counts (no laser input). In
our standard set-up, the afterpulsing is most likely to occur at around 180 ns
following a detection event, for both real counts and dark counts. We
characterize the afterpulsing behavior and speculate that it is not due to the
SNSPD itself but rather the amplifiers used to boost the electrical output
signal from the SNSPD. We show that the afterpulsing indeed disappears when we
use a different amplifier with a better low frequency response. We also examine
the short-lived enhancement of detection efficiency during the recovery of the
SNSPD due to temporary perturbation of the bias and grounding conditions
Security Issues of Quantum Cryptographic Systems with Imperfect Detectors
The laws of quantum physics can be used to secure communications between two distant parties in a scheme called quantum key distribution (QKD), even against a technologically unlimited eavesdropper. While the theoretical security of QKD has been proved rigorously, current implementations of QKD are generally insecure. In particular, mathematical models of devices, such as detectors, do not accurately describe their real-life behaviour. Such seemingly insignificant discrepancies can compromise the security of the entire scheme, especially as novel detector technologies are being developed with little regard for potential vulnerabilities.In this thesis, we study how detector imperfections can impact the security of QKD and how to overcome such technological limitations. We first analyze the security of a high-speed QKD system with finite detector dead time tau. We show that the previously reported sifting approaches are not guaranteed to be secure in this regime. More specifically, Eve can induce a basis-dependent detection efficiency at the receiver's end. Modified key sifting schemes that are basis-independent, and thus secure in the presence of dead time and an active eavesdropper, are discussed and compared. It is shown that the maximum key generation rate is 1/(2tau) for passive basis selection, and 1/tau for active basis selection. The security analysis is also extended to the decoy state BB84 protocol.We then study a relatively new type of single-photon detector called the superconducting nanowire single-photon detector (SNSPD), and discover some unexpected behaviour. We report an afterpulsing effect present when the SNSPD is operated in the high bias current regime. In our standard set-up, the afterpulsing is most likely to occur at around 180 ns following a detection event, for both real counts and dark counts. We characterize the afterpulsing behaviour and speculate that it is not due to the SNSPD itself but rather the associated read-out circuit. We also report and examine a short-lived enhancement of detection efficiency during the recovery of the SNSPD, as well as a longer dead time than previously thought. These findings should be of interest not only to the QKD community but also researchers using SNSPDs in other applications.Ph.D