3 research outputs found

    Identification of genetic polymorphisms in DNA repair xenoderma pigmentosum group D gene and its association with head and neck cancer susceptibility in rural Indian population: a hospital based case-control study from south-western Maharashtra, India

    Get PDF
    Background: Smoking and alcohol related head and neck cancer is a major concern of health risk in developing countries, such as India. In this study, we aimed to determine the frequency of polymorphisms in DNA repair gene, xeroderma pigmentosum complementation group D (XPD) at codon (cd) 156, cd199, cd320, cd751 in patients of oral cancer from South-Western Maharashtra, India and to evaluate their association with oral cancer development.Methods: We used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze XPD gene polymorphisms in 320 patients with oral cancer and in 400 age and sex matched disease-free controls.Results: There was no significant difference in the genotype distribution between oral cancer patients and controls for each polymorphism (p>0.05) except XPD199. The result from our study showed that allele frequencies of selected genes were not statistically different between the groups for XPD Arg156, XPD Asn320, XPD Gln751. XPDMet199 (OR=29.44; 95% CI= (18.47-46.92); p≤0.0001) genotypes significantly increased the risk of head and neck cancer.Conclusions: This study indicates that polymorphisms in cd199 of XPD gene could play a role in modifying genetic susceptibility of individual to head and neck cancer inMaharashtra patients. Thus, the case-control study suggest that selected DNA repair genes represent genetic determinants in oral carcinogenesis along with other risk factors in the rural Indian population.

    The Spectrum of Dystrophin Gene Mutations in Duchene Muscular Dystrophy Patients of South-Western Maharashtra in India

    No full text
    Background: Duchenne muscular dystrophy is the most common neuromuscular disease of childhood caused by deletion or point mutations in the dystrophin gene. Though the importance of deletion mutations in the dystrophin gene causing DMD have been reported worldwide, no data available from rural population of Maharashtra. Objectives: This study specifically aimed at the investigation of deletion mutations in the DMD gene from the patients from South-Western Maharashtra. Material & Methods: Fifty patients with clinically diagnosed DMD were analyzed to screen for intragenic deletions in 21 exons within the DMD gene using the multiplex polymerase chain reaction. Results: Amongst the 50 unrelated DMD patients from South-Western Maharashrra we found DMD gene deletions in 47 cases which represent 94 % mutations in DMD patients. Majority of the deletions (85.10%) were located at distal hot spot region that encompasses exons 42-53 and 10.63% of the deletions were located at the proximal hot spot region (exons 2-19). Exons 50, 51, 52 and 53 are most frequently deleted. Conclusion: It is important to note that we could be the first to search for the most frequent deletions in the exons of DMD gene in from the rural areas of Maharashtra with the help of molecular biology tools

    Identification of genetic polymorphisms in DNA repair xenoderma pigmentosum group D gene and its association with head and neck cancer susceptibility in rural Indian population: a hospital based case-control study from south-western Maharashtra, India

    No full text
    Background: Smoking and alcohol related head and neck cancer is a major concern of health risk in developing countries, such as India. In this study, we aimed to determine the frequency of polymorphisms in DNA repair gene, xeroderma pigmentosum complementation group D (XPD) at codon (cd) 156, cd199, cd320, cd751 in patients of oral cancer from South-Western Maharashtra, India and to evaluate their association with oral cancer development.Methods: We used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze XPD gene polymorphisms in 320 patients with oral cancer and in 400 age and sex matched disease-free controls.Results: There was no significant difference in the genotype distribution between oral cancer patients and controls for each polymorphism (p>0.05) except XPD199. The result from our study showed that allele frequencies of selected genes were not statistically different between the groups for XPD Arg156, XPD Asn320, XPD Gln751. XPDMet199 (OR=29.44; 95% CI= (18.47-46.92); p≤0.0001) genotypes significantly increased the risk of head and neck cancer.Conclusions: This study indicates that polymorphisms in cd199 of XPD gene could play a role in modifying genetic susceptibility of individual to head and neck cancer inMaharashtra patients. Thus, the case-control study suggest that selected DNA repair genes represent genetic determinants in oral carcinogenesis along with other risk factors in the rural Indian population.
    corecore