416 research outputs found

    Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens

    Get PDF
    Intermittent systemic exposure to psychostimulants such as amphetamine leads to several forms of long-lasting behavioral plasticity including non-associative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying each of these forms of plasticity. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density in this site and enhances the locomotor sensitization normally observed following repeated cocaine. Mice lacking the Kal7 gene display similar phenotypes suggesting that locomotor sensitization and increased NAcc spine density need not be positively correlated. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5µl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threonine-alanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that Cdk5 phosphorylation of Kal7 in the NAcc is necessary for the formation of context-drug associations potentially through the modulation of dendritic spine dynamics in this site

    Xylitol Syrup for the Prevention of Acute Otitis Media

    Get PDF
    Acute otitis media (AOM) is a common childhood illness and the leading indication for antibiotic prescriptions for US children. Xylitol, a naturally occurring sugar alcohol, can reduce AOM when given 5 times per day as a gum or syrup, but a more convenient dosing regimen is needed for widespread adoption

    Trycycler: consensus long-read assemblies for bacterial genomes

    Get PDF
    While long-read sequencing allows for the complete assembly of bacterial genomes, long-read assemblies contain a variety of errors. Here, we present Trycycler, a tool which produces a consensus assembly from multiple input assemblies of the same genome. Benchmarking showed that Trycycler assemblies contained fewer errors than assemblies constructed with a single tool. Post-assembly polishing further reduced errors and Trycycler+polishing assemblies were the most accurate genomes in our study. As Trycycler requires manual intervention, its output is not deterministic. However, we demonstrated that multiple users converge on similar assemblies that are consistently more accurate than those produced by automated assembly tools

    The feasibility of measuring the activation of the trunk muscles in healthy older adults during trunk stability exercises

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the older adult population increases, the potential functional and clinical burden of trunk muscle dysfunction may be significant. An evaluation of risk factors including the impact of the trunk muscles in terms of their temporal firing patterns, amplitudes of activation, and contribution to spinal stability is required. Therefore, the specific purpose of this study was to assess the feasibility of measuring the activation of trunk muscles in healthy older adults during specific leg exercises with trunk stabilization.</p> <p>Methods</p> <p>12 asymptomatic adults 65 to 75 years of age were included in the study. Participants performed a series of trunk stability exercises, while bilateral activation of abdominal and back extensor muscles was recorded by 24 pairs of Meditrace™ surface electrodes. Maximal voluntary isometric contractions (MVIC) were performed for electromyographic (EMG) normalization purposes. EMG waveforms were generated and amplitude measures as a percentage of MVIC were calculated along with ensemble average profiles. 3D kinematics data were also recorded, using an electromagnetic sensor placed at the left lateral iliac crest. Furthermore, a qualitative assessment was conducted to establish the participant's ability to complete all experimental tasks.</p> <p>Results</p> <p>Excellent quality abdominal muscle activation data were recorded during the tasks. Participants performed the trunk stability exercises with an unsteady, intermittent motion, but were able to keep pelvic motion to less than 10°. The EMG amplitudes showed that during these exercises, on average, the older adults recruited their abdominal muscles from 15–34% of MVIC and back extensors to less than 10% of MVIC. There were similarities among the abdominal muscle profiles. No participants reported pain during the testing session, although 3 (25%) of the participants reported delayed onset muscle soreness during follow up that was not functionally limiting.</p> <p>Conclusion</p> <p>Older adults were able to successfully complete the trunk stability protocol that was developed for younger adults with some minor modifications. The collected EMG amplitudes were higher than those reported in the literature for young healthy adults. The temporal waveforms for the abdominal muscles showed a degree of synchrony among muscles, except for the early activation from the internal oblique prior to lifting the leg off the table.</p

    The Cost of Sex: Quantifying Energetic Investment in Gamete Production by Males and Females

    Get PDF
    The relative energetic investment in reproduction between the sexes forms the basis of sexual selection and life history theories in evolutionary biology. It is often assumed that males invest considerably less in gametes than females, but quantifying the energetic cost of gamete production in both sexes has remained a difficult challenge. For a broad diversity of species (invertebrates, reptiles, amphibians, fishes, birds, and mammals), we compared the cost of gamete production between the sexes in terms of the investment in gonad tissue and the rate of gamete biomass production. Investment in gonad biomass was nearly proportional to body mass in both sexes, but gamete biomass production rate was approximately two to four orders of magnitude higher in females. In both males and females, gamete biomass production rate increased with organism mass as a power law, much like individual metabolic rate. This suggests that whole-organism energetics may act as a primary constraint on gamete production among species. Residual variation in sperm production rate was positively correlated with relative testes size. Together, these results suggest that understanding the heterogeneity in rates of gamete production among species requires joint consideration of the effects of gonad mass and metabolism

    Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two year cancer bioassays conducted by the National Toxicology Program have shown chronic exposure to dioxin-like compounds (DLCs) to lead to the development of both neoplastic and non-neoplastic lesions in the hepatic tissue of female Sprague Dawley rats. Most, if not all, of the hepatotoxic effects induced by DLC's are believed to involve the binding and activation of the transcription factor, the aryl hydrocarbon receptor (AhR). Toxicogenomics was implemented to identify genomic responses that may be contributing to the development of hepatotoxicity in rats.</p> <p>Results</p> <p>Through comparative analysis of time-course microarray data, unique hepatic gene expression signatures were identified for the DLCs, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (100 ng/kg/day) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) (1000 ng/kg/day) and the non-DLC 2,2',4,4',5,5',-hexachlorobiphenyl (PCB153) (1000 μg/kg/day). A common time independent signature of 41 AhR genomic biomarkers was identified which exhibited at least a 2-fold change in expression following subchronic (13-wk) and chronic (52-wk) p.o. exposure to TCDD and PCB126, but not the non DLC, PCB153. Real time qPCR analysis validated that 30 of these genes also exhibited at least a 2-fold change in hepatic expression at 24 hr following a single exposure to TCDD (5 μg/kg, po). Phenotypic anchoring was conducted which identified forty-six genes that were differently expressed both following chronic p.o. exposure to DLCs and in previously reported studies of cholangiocarcinoma or hepatocellular adenoma.</p> <p>Conclusions</p> <p>Together these analyses provide a comprehensive description of the genomic responses which occur in rat hepatic tissue with exposure to AhR ligands and will help to isolate those genomic responses which are contributing to the hepatotoxicity observed with exposure to DLCs. In addition, the time independent gene expression signature of the AhR ligands may assist in identifying other agents with the potential to elicit dioxin-like hepatotoxic responses.</p

    Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity.

    Get PDF
    Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4 &lt;sup&gt;+&lt;/sup&gt; T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity

    Pharmacokinetic/pharmacodynamic modelling approaches in paediatric infectious diseases and immunology.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modelling is used to describe and quantify dose-concentration-effect relationships. Within paediatric studies in infectious diseases and immunology these methods are often applied to developing guidance on appropriate dosing. In this paper, an introduction to the field of PKPD modelling is given, followed by a review of the PKPD studies that have been undertaken in paediatric infectious diseases and immunology. The main focus is on identifying the methodological approaches used to define the PKPD relationship in these studies. The major findings were that most studies of infectious diseases have developed a PK model and then used simulations to define a dose recommendation based on a pre-defined PD target, which may have been defined in adults or in vitro. For immunological studies much of the modelling has focused on either PK or PD, and since multiple drugs are usually used, delineating the relative contributions of each is challenging. The use of dynamical modelling of in vitro antibacterial studies, and paediatric HIV mechanistic PD models linked with the PK of all drugs, are emerging methods that should enhance PKPD-based recommendations in the future

    Primary spinal cord tumors of childhood: effects of clinical presentation, radiographic features, and pathology on survival

    Get PDF
    To determine the relationship between clinical presentation, radiographic features, pathology, and treatment on overall survival of newly diagnosed pediatric primary spinal cord tumors (PSCT). Retrospective analysis of all previously healthy children with newly diagnosed PSCT at a single institution from 1995 to present was performed. Twenty-five pediatric patients (15 boys, average 7.9 years) were diagnosed with PSCT. Presenting symptoms ranged from 0.25 to 60 months (average 7.8 months). Symptom duration was significantly shorter for high grade tumors (average 1.65 months) than low grade tumors (average 11.2 months) (P = 0.05). MRI revealed tumor (8 cervical, 17 thoracic, 7 lumbar, 7 sacral) volumes of 98–94,080 mm3 (average 19,474 mm3). Homogeneous gadolinium enhancement on MRI correlated with lower grade pathology (P = 0.003). There was no correlation between tumor grade and volume (P = 0.63) or edema (P = 0.36) by MRI analysis. Median survival was 53 months and was dependent on tumor grade (P = 0.05) and gross total resection (P = 0.01) but not on gender (P = 0.49), age of presentation (P = 0.82), duration of presenting symptoms (P = 0.33), or adjuvant therapies (P = 0.17). Stratified Kaplan–Meier analysis confirmed the association between degree of resection and survival after controlling for tumor grade (P = 0.01). MRI homogeneous gadolinium enhancement patterns may be helpful in distinguishing low grade from high grade spinal cord malignancies. While tumor grade and gross total resection rather than duration of symptoms correlated with survival in our series, greater than one-third of patients had reported symptoms greater than 6 months duration prior to diagnosis
    corecore