218 research outputs found
Deoxynivalenol: toxicological profile and potential for reducing cereal grain contamination using bacterial additives in fermented animal feed.
Deoxynivalenol (DON) contamination of grain destined for animal feeds is a major toxicological risk to monogastrics and is suspected of restricting productivity in ruminants. Whereas bacterial additives have been developed that can detoxify DON in the rumen and lower intestine, there are currently no commercial inoculants able to perform this task in crimped grain (CG) silage, a regionally important method of moist grain preservation based on homo- and heterofermentative lactic acid bacteria or chemical additives. Determining whether this ensiling process alongside the action of detoxifying bacteria has the potential to remove DON in CG prior to ingestion, was explored in mini-silo ensiling experiments. CG was heat treated (100 °C, 60 min) or ensiled fresh in triplicate 50 g silos, spiked with 5 mg/kg DON and inoculated with lactic acid bacteria derived from wild birds, natural epiphytic inoculants and commercially sourced silage additives (21 d). DON recovery was only significantly reduced (31.2 ± 14.4% recovery, p<0.001, n= 30) by heat treatment, as determined by IAC-RP-HPLC-UV. Bacterial assemblage analysis by 16S rRNA PCR-DGGE-SEQ identified Weissella cibaria, Pantoea agglomerans, Bacillus subtilis, B. licheniformis and Hafnia alvei as candidate detoxification agents, of which W. cibaria and H. alvei decreased DON recovery in vitro (11.3 and 6.2% recovery respectively, p<0.05, n = 18), which translated to inoculated W. cibaria yielding a decrease in DON recovery (67.2± 14.4%, 28 d) in naturally contaminated crimped wheat (13.5 ± 1.0 mg/kg, 35-40% moisture, p<0.05, n =15). As W. cibaria is a lactic acid bacteria already associated with fermented CG by default it has promise as a novel DON detoxification agent in CG silage. DON is however just one of many hepatotoxic co-contaminants. Retrorsine, a DNA-crosslinking pyrrolizidine alkaloid derived from Ragwort (Senecio sp.) was investigated for interactive toxicity with DON in an in vitro co-exposure experiment. HepG2 cells were exposed to Log10 multifactorial binary exposures for 48 h followed by a suite of assays to elucidate mechanisms of interactive cytotoxicity, genotoxicity and modulation of the proteome. Retrorsine was tentatively confirmed to form DNA/protein crosslinks in the comet, micronucleus and crosslinking assays, whilst DON was found to potently induce cytotoxicity and apoptosis. Co-exposure yielded a complex toxicity response, with low doses yielding antagonistic effects and high doses trending towards additive effects, although DON dose was generally the principle component. The difficulties associated with undertaking an interactive toxicity study where both toxins have multiple metabolic and cellular targets are highlighted
Selective effects of small barriers on river‐resident fish
Habitat fragmentation is a principal threat to biodiversity and artificial river barriers are a leading cause of the global decline in freshwater biota. Although the impact of barriers on diadromous fish is well established, impacts on river-resident fish communities remain unclear, especially for low-head barriers.We examined the movement of five contrasting freshwater fish (topmouth gudgeon, European minnow, stone loach, bullhead and brown trout) in an experimental cascade mesocosm with seven pools separated by small vertical barriers.Passage rates differed significantly among species and increased with body size and sustained swimming speed (Usus), ranging from an average of 0.2 passes/hr in topmouth gudgeon to 3.4 passes/hr in brown trout. A random-walk simulation indicated that barriers can result in net downstream movement and shifts in community composition.Passage rates in brown trout were leptokurtic, that is, most individuals were relatively sedentary while a small proportion showed frequent movements. Upstream passage rates of brown trout increased with body length and boldness while fish with lower aerobic scope tended to move downstream. Passage rates showed significant individual repeatability in brown trout, independent of body size, indicating the potential for in-stream barriers to exert selective effects on fish populations.Our results show that barrier effects can be more complex than simply blocking fish passage, and that river-resident fish can be impacted even by very small barriers. We show that fish passage depends on a wide range of morphological, physiological and behavioural drivers, and that barriers can exert selective effects on these traits and cause shifts in community composition.Policy implications. Barrier mitigation measures need to embrace interspecific and intraspecific variation in fish passage to avoid inadvertent artificial selection on fish communities. Given the high abundance of low-head structures in river systems worldwide, a paradigm shift is needed to recognise the subtle impacts of small barriers on freshwater biodiversity. Removal of small barriers or nature-like fishways should allow better passage of the wider fish community compared to widely used salmonid-centric fish passage options
Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging
Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab ( Carcinus maenas )
publisher: Elsevier articletitle: Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab (Carcinus maenas) journaltitle: Aquatic Toxicology articlelink: http://dx.doi.org/10.1016/j.aquatox.2017.08.006 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved
A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses
Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem
- …