6 research outputs found

    Impact of Shift Work and Long Working Hours on Worker Cognitive Functions: Current Evidence and Future Research Needs

    Get PDF
    Particular working conditions and/or organization of working time may cause important sleep disturbances that have been proposed to be predictive of cognitive decline. In this regard, circadian rhythm misalignment induced by exposure to night work or long working hours would be responsible for cognitive impairment. Nevertheless, evidence supporting this correlation is limited and several issues still need to be elucidated. In this regard, we conducted a systematic review to evaluate the association between shift/night work and cognitive impairment and address its main determinants. Information provided by the reviewed studies suggested that night work might have serious immediate negative effects especially on cognitive domains related to attention, memory and response inhibition. Furthermore, cognitive performance would progressively worsen over consecutive night shifts or following exposure to very long work shifts. Otherwise, conflicting results emerged regarding the possible etiological role that night work chronic exposure would have on cognitive impairment. Therefore, circadian rhythm desynchronization, lack of sleep and fatigue resulting from night work may negatively impact worker's cognitive efficiency. However, in light of the considerable methodological variability of the reviewed studies, we proposed to develop a standardized research and evaluation strategy in order to obtain a better and comprehensive understanding of this topic

    Welding Fume Exposure and Epigenetic Alterations: A Systematic Review

    No full text
    Epigenetics are heritable changes in gene expression not coded in the DNA sequence, which stand at the interface between the genome, environmental exposure and development. From an occupational health perspective, epigenetic variants may link workplace exposures and health effects. Therefore, this review aimed to overview possible epigenetic effects induced by welding fumes on exposed workers and health implications. A systematic search was performed on Pubmed, Scopus, and ISI Web of Knowledge databases. DNA methylation changes have been reported in genes responsible for the cardiac autonomic function and coagulation, i.e., LINE-1, GPR133 and F2RL3, in mitochondrial-DNA-sequences involved in the regulation of energy-generation/redox-signaling, as well as in inflammatory activated genes, i.e., iNOS. However, the limited number of retrieved articles, their cross-sectional nature, the lack of a suitable qualitative-quantitative exposure assessment, and the heterogeneity of biological-outcomes investigated, prevent the extrapolation of a definite causal relationship between welding fumes and epigenetic phenomena. Future studies should clarify the function of such epigenetic alterations as possible markers of occupational exposure and early effect, dose-response relationships, and underlying molecular mechanisms. Overall, this may be helpful to guide suitable risk assessment and management strategies to protect the health of workers exposed to welding fumes

    The Impact of Shift-Work and Night Shift-Work on Thyroid: A Systematic Review

    No full text
    Thyroid hormones are regulated by the pituitary thyroid stimulating hormone (TSH), whose secretion presents a circadian rhythmicity. Indeed, it is conceivable that shift- and night shift-work, affecting sleep-wake rhythms, may impact thyroid functionality. Therefore, the aim of the present review was to provide an overview on the association between shift- and night shift-work and thyroid hormonal changes and disease development. A systematic review of studies available in PubMed, Scopus, and ISI Web of Science databases was performed. A positive association between night shift-work and increased TSH concentrations was reported by most of the reviewed investigations. Inconclusive evidence was available on thyroid diseases. However, the limited number of studies, the noticeable heterogeneity in the shift-work scheduling, in terms of amount, duration, type of shift- or night shift-work, prevents easily integrating findings and extrapolating definite conclusions. Further investigation seems necessary to better define the relationship between shift schedules and different thyroid outcomes, and possible long-term implications of early functional changes. Overall, this may support the adoption of advanced risk assessment and management strategies aimed to achieve a safer workplace organization and a timely, responsible realization of all the benefits of a 24-h economy

    Impact of Shift Work and Long Working Hours on Worker Cognitive Functions: Current Evidence and Future Research Needs

    No full text
    Particular working conditions and/or organization of working time may cause important sleep disturbances that have been proposed to be predictive of cognitive decline. In this regard, circadian rhythm misalignment induced by exposure to night work or long working hours would be responsible for cognitive impairment. Nevertheless, evidence supporting this correlation is limited and several issues still need to be elucidated. In this regard, we conducted a systematic review to evaluate the association between shift/night work and cognitive impairment and address its main determinants. Information provided by the reviewed studies suggested that night work might have serious immediate negative effects especially on cognitive domains related to attention, memory and response inhibition. Furthermore, cognitive performance would progressively worsen over consecutive night shifts or following exposure to very long work shifts. Otherwise, conflicting results emerged regarding the possible etiological role that night work chronic exposure would have on cognitive impairment. Therefore, circadian rhythm desynchronization, lack of sleep and fatigue resulting from night work may negatively impact worker’s cognitive efficiency. However, in light of the considerable methodological variability of the reviewed studies, we proposed to develop a standardized research and evaluation strategy in order to obtain a better and comprehensive understanding of this topic

    High Amylose Wheat Bread at Breakfast Increases Plasma Propionate Concentrations and Reduces the Postprandial Insulin Response to the Following Meal in Overweight Adults

    No full text
    Background: High amylose starchy foods modulate the postprandial metabolic response in humans. However, the mechanisms of their metabolic benefits and their impact on the subsequent meal have not been fully elucidated. Objective: We aimed to evaluate whether glucose and insulin responses to a standard lunch are influenced by the consumption of amylose-rich bread at breakfast in overweight adults and whether changes in plasma short chain fatty acids (SCFAs) concentrations contribute to their metabolic effects. Methods: Using a randomized crossover design, 11 men and 9 women, BMI 30 ± 3 kg/m2, 48 ± 19 y, consumed at breakfast 2 breads made with high amylose flour (HAF): 85%-HAF (180 g) and 75%-HAF (170 g), and control bread (120 g) containing 100% conventional flour. Plasma samples were collected at fasting, 4 h after breakfast, and 2 h after a standard lunch to measure glucose, insulin, and SCFA concentrations. ANOVA posthoc analyses were used for comparisons. Results: Postprandial plasma glucose responses were 27% and 39% lower after breakfasts with 85%- and 70%-HAF breads than control bread (P = 0.026 and P = 0.003, respectively), with no difference after lunch. Insulin responses were not different between the 3 breakfasts, whereas there was a 28% lower response after the lunch following breakfast with 85%-HAF bread than the control (P = 0.049). Propionate concentrations increased from fasting by 9% and 12% 6 h after breakfasts with 85%- and 70%-HAF breads and decreased by 11% with control bread (P < 0.05). At 6 h after breakfast with 70%-HAF bread, plasma propionate and insulin were inversely correlated (r = -0.566; P = 0.044). Conclusions: Amylose-rich bread reduces the postprandial glucose response after breakfast and insulin concentrations after the subsequent lunch in overweight adults. This second meal effect may be mediated by the elevation of plasma propionate due to intestinal fermentation of resistant starch. High amylose products could be a promising tool in a dietary prevention strategy for type 2 diabetes. This trial was registered at clinical trial registry as: NCT03899974 (https://www. Clinicaltrials: gov/ct2/show/NCT03899974)
    corecore