5 research outputs found

    Preclinical Optimization and Safety Studies of a New Lentiviral Gene Therapy for p47phox-Deficient Chronic Granulomatous Disease

    Get PDF
    Chronic granulomatous disease (CGD) is an inherited blood disorder that renders patients susceptible to infections and inflammation. A recent clinical trial of lentiviral gene therapy for the most frequent form of CGD, X-linked, has demonstrated stable correction over time, with no adverse events related to the gene therapy procedure. We have recently developed a parallel lentiviral vector for p47-deficient CGD (p47phoxCGD), the second most common form of this disease. Using this vector, we have observed biochemical correction of CGD in a mouse model of the disease. In preparation for clinical trial approval, we have performed standardised pre-clinical studies following Good Laboratory Practice (GLP) principles, to assess the safety of the gene therapy procedure. We report no evidence of adverse events, including mutagenesis and tumourigenesis, in human haematopoietic stem cells transduced with the lentiviral vector. Biodistribution studies of transduced human CD34+ cells indicate that the homing properties or engraftment ability of the stem cells is not negatively affected. CD34+ cells derived from a p47phoxCGD patient were subjected to an optimised transduction protocol and transplanted into immunocompromised mice. After the procedure, patient-derived neutrophils resumed NADPH oxidase production in vivo, suggesting that gene correction was successful. These studies pave the way to a first-in-man clinical trial of lentiviral gene therapy for the treatment of p47phoxCGD

    Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR

    Get PDF
    Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in relapsed/refractory acute lymphoblastic leukemia (ALL)1,2,3,4,5, but toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, limits broader application. Moreover, 40–60% of patients relapse owing to poor CAR T cell persistence or emergence of CD19− clones. Some factors, including the choice of single-chain spacer6 and extracellular7 and costimulatory domains8, have a profound effect on CAR T cell function and persistence. However, little is known about the impact of CAR binding affinity. There is evidence of a ceiling above which increased immunoreceptor affinity may adversely affect T cell responses9,10,11. We generated a novel CD19 CAR (CAT) with a lower affinity than FMC63, the high-affinity binder used in many clinical studies1,2,3,4. CAT CAR T cells showed increased proliferation and cytotoxicity in vitro and had enhanced proliferative and in vivo antitumor activity compared with FMC63 CAR T cells. In a clinical study (CARPALL, NCT02443831), 12/14 patients with relapsed/refractory pediatric B cell acute lymphoblastic leukemia treated with CAT CAR T cells achieved molecular remission. Persistence was demonstrated in 11 of 14 patients at last follow-up, with enhanced CAR T cell expansion compared with published data. Toxicity was low, with no severe CRS. One-year overall and event-free survival were 63% and 46%, respectivel

    An improved medium formulation for efficient ex vivo gene editing, expansion and engraftment of hematopoietic stem and progenitor cells

    No full text
    Gene editing has emerged as a powerful tool for the therapeutic correction of monogenic diseases. CRISPR-Cas9 applied to hematopoietic stem and progenitor cells (HSPCs) has shown great promise in proof-of-principle preclinical studies to treat hematological disorders, and clinical trials using these tools are now under way. Nonetheless, there remain important challenges that need to be addressed, such as the efficiency of targeting primitive, long-term repopulating HSPCs and their in vitro expansion for clinical application. In this study, we assessed the effect of different culture medium compositions on the ability of HSPCs to proliferate and undergo homology-directed repair-mediated knock-in of a reporter gene, while preserving their stemness features during ex vivo culture. We demonstrated that by supplementing the culture medium with stem cell agonists and by fine-tuning its cytokine composition it is possible to achieve high levels of gene targeting in long-term repopulating HSPCs both in vitro and in vivo, with a beneficial balance between preservation of stemness and cell expansion. Overall, the implementation of this optimized ex vivo HSPC culture protocol can improve the efficacy, feasibility, and applicability of gene editing as a key step to unlocking the full therapeutic potential of this powerful technology

    Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott - Aldrich Syndrome

    Get PDF
    Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency with severe platelet abnormalities and complex immunodeficiency. Although clinical gene therapy approaches using lentiviral vectors have produced encouraging results, full immune and platelet reconstitution is not always achieved. Here we show that a CRISPR/Cas9-based genome editing strategy allows the precise correction of WAS mutations in up to 60% of human hematopoietic stem and progenitor cells (HSPCs), without impairing cell viability and differentiation potential. Delivery of the editing reagents to WAS HSPCs led to full rescue of WASp expression and correction of functional defects in myeloid and lymphoid cells. Primary and secondary transplantation of corrected WAS HSPCs into immunodeficient mice showed persistence of edited cells for up to 26 weeks and efficient targeting of long-term repopulating stem cells. Finally, no major genotoxicity was associated with the gene editing process, paving the way for an alternative, yet highly efficient and safe therapy

    Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott - Aldrich Syndrome

    No full text
    Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency with severe platelet abnormalities and complex immunodeficiency. Although clinical gene therapy approaches using lentiviral vectors have produced encouraging results, full immune and platelet reconstitution is not always achieved. Here we show that a CRISPR/Cas9-based genome editing strategy allows the precise correction of WAS mutations in up to 60% of human hematopoietic stem and progenitor cells (HSPCs), without impairing cell viability and differentiation potential. Delivery of the editing reagents to WAS HSPCs led to full rescue of WASp expression and correction of functional defects in myeloid and lymphoid cells. Primary and secondary transplantation of corrected WAS HSPCs into immunodeficient mice showed persistence of edited cells for up to 26 weeks and efficient targeting of long-term repopulating stem cells. Finally, no major genotoxicity was associated with the gene editing process, paving the way for an alternative, yet highly efficient and safe therapy
    corecore