37 research outputs found

    Development of anti-foulant ultraviolet-assisted polyvinyl alcohol layer on the polysulfone-based nanohybrid membrane for industrial rubber wastewater decontamination

    Get PDF
    Introduction: Membrane fouling has been reported to be one of the bottlenecks of membrane technologies for wastewater treatment. To mitigate its negative impacts, we fabricated polysulfone membrane (PSf) composites made of silica (SiO2) and graphene oxide (GO) nanoparticles that modified with ultraviolet (UV)-assisted polyvinyl alcohol layer on the membrane surface.Methods: The membrane composite was synthesized using non-solvent induced phase separation (NIPS) method. The membrane was further treated by UV irradiation and cross-linked with PVA coating to cope with the fouling problem. The modified membrane was applied for industrial rubber wastewater decontamination.Results: The UV irradiation and cross-linked PVA coating to the PSf/GO-SiO2 membrane improved the pseudo-steady state permeate flux by 60.15% from 20.05 to 50.32 L/m2hr and maintained the permeate flux up to 82.33%. About 85% of total dissolved solids (TDS), 81% of chemical oxygen demand (COD), and 84% of ammonia compound (NH3) with initial concentrations of 335.76, 242.55, 175.19 mg/L, respectively, could be removed after 8 h of membrane treatment. The modified membrane also exhibited an excellent flux recovery ratio of up to 83%.Discussion: The modified membrane changed the fouling mechanism from pore blockage to cake filtration, which signifies the capability of the membrane to tackle severe fouling tendency. The cross-linked UV/PVA coating reduced fouling formation by reducing the adsorptive interactions between the foulant molecules and the membrane surface by enhancing membrane surface hydrophilicity. This implies that incorporating GO/SiO2 nanoparticles with UV irradiation and PVA coating substantially enhanced the physicochemical properties of the PSf membrane

    Alteration of Relative Rates of Biodegradation and Regeneration of Cervical Spine Cartilage through the Restoration of Arterial Blood Flow Access to Rhomboid Fossa: A Hypothesis

    Get PDF
    We found the logical way to prove the existence of the mechanism that maintains the rates of biodegradation and regeneration of cervical spine cartilage. We demonstrate, that after we restore access to arterial blood flow through cervical vertebral arteries to rhomboid fossa it causes the prevalence of regeneration over biodegradation. This is in the frames of consideration of the human body as a dissipative structure. Then the recovery of the body should be considered as a reduction of the relative rates of decay below the regeneration ones. Then the recovery of cervical spine cartilage through redirecting of inner dissipative flow depends on the information about oxygen availability that is provided from oxygen detectors in the rhomboid fossa to the cerebellum. Our proposed approach explains already collected data, which satisfies all the scientific requirements. This allows us to draw conclusions that permit reconsidering the way of dealing with multiple chronic diseases

    Sticky DNA, a Long GAA·GAA·TTC Triplex That Is Formed Intramolecularly, in the Sequence of Intron 1 of the Frataxin Gene

    Get PDF
    Friedreich's ataxia is caused by the massive expansion of GAA.TTC repeats in intron 1 of the frataxin (X25) gene. Our prior investigations showed that long GAA.TTC repeats formed very stable triplex structures which caused two repeat tracts to adhere to each other (sticky DNA). This process was dependent on negative supercoiling and the presence of divalent metal ions. Herein, we have investigated the formation of sticky DNA from plasmid monomers and dimers; sticky DNA is formed only when two tracts of sufficiently long (GAA.TTC)(n) (n = 59-270) are present in a single plasmid DNA and are in the direct repeat orientation. If the inserts are in the indirect (inverted) repeat orientation, no sticky DNA was observed. Furthermore, kinetic studies support the intramolecular nature of sticky DNA formation. Electron microscopy investigations also provide strong data for sticky DNA as a single long triplex. Hence, these results give new insights into our understanding of the capacity of sticky DNA to inhibit transcription and thereby reduce the level of frataxin protein as related to the etiology of Friedreich's ataxia

    Natural Degradation: Polymer Degradation under Different Conditions

    No full text
    Natural degradation (ND) is currently one of the main directions of polymer research [...

    Natural Degradation: Polymer Degradation under Different Conditions

    No full text
    Natural degradation (ND) is currently one of the main directions of polymer research [...

    Nucleic Acid Aptamers in Nanotechnology

    No full text
    Nucleic Acid (NA) aptamers are oligonucleotides. They are unique due to their secondary and tertiary structure; namely, the secondary structure defines the tertiary one by means of affinity and specificity. Our review is devoted only to DNA and RNA aptamers, since the majority of achievements in this direction were obtained with their application. NA aptamers can be used as macromolecular devices and consist of short single-stranded molecules, which adopt unique three-dimensional structures due to the interaction of complementary parts of the chain and stacking interactions. The review is devoted to the recent nanotechnological advances in NA aptamers application

    Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability

    No full text
    A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes

    Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability

    No full text
    A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes

    Biopolymeric Nanoparticles–Multifunctional Materials of the Future

    No full text
    Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas—especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles

    Hypothetical Reason for the Restoration of HbA1c Level for Pre-Diabetic Patients through the Recovery of Arterial Blood Flow Access to Rhomboid Fossa

    No full text
    We demonstrate that the recovery of cervical vertebral arterial blood flow access to the rhomboid fossa causes the restoration of HbA1c level for the patients with pre-diabetic (pre-DM) condition. This observation is in good agreement with the consideration of the human body as a dissipative structure. Such consideration is the focus of the recently announced centralized aerobic-anaerobic energy balance compensation (CAAEBC) theory. According to the theory, observed connections between high blood pressure (HBP) and the lifted level of HbA1c can be hypothetically linked through the restrictions of blood flow access to rhomboid fossa, causing the delivery of incorrect information of blood oxygen availability. Below we provide detailed information of how in this case CAAEBC theory explains the very initiation of multiple chronic diseases, starting with type 2 Diabetes Mellitus (DM)
    corecore