119 research outputs found

    A global class reunion with multiple groups feasting on the declining insect smorgasbord

    Get PDF
    We report a detection of a surprising similarity in the diet of predators across distant phyla. Though just a first glimpse into the subject, our discovery contradicts traditional aspects of biology, as the earliest notions in ecology have linked the most severe competition of resources with evolutionary relatedness. We argue that our finding deserves more research, and propose a plan to reveal more information on the current biodiversity loss around the world. While doing so, we expand the recently proposed conservation roadmaps into a parallel study of global interaction networks

    First record of an indoor pest sawtoothed grain beetle Oryzaephilus surinamensis (Coleoptera: Silvanidae) from wild outdoor wood ant nest

    Get PDF
    Alive individual adult sawtoothed grain beetle Oryzaephilus surinamensis (Linnaeus, 1758) was discovered inside a nest mound of the red wood ant Formica rufa Linnaeus, 1758 during a survey of myrmecophilous invertebrates. The sawtoothed grain beetle is a widespread indoor pest that has not previously been found in an ant nest. It is one of the most common pests in stored grain and cereal products, but the natural life-style of the species is not known. As the site of discovery was exceptional, we verified the species identification using the DNA barcode. If the sawtoothed grain beetle can live in mounds of red wood ants, the mounds may become widespread source habitats for the future infestations of this serious stored product pest

    Pellets of proof: First glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces

    Get PDF
    Recent advances in molecular techniques allow us to resolve the diet of unstudied taxa. Odonates are potentially important top-down regulators of many insects. Yet, to date, our knowledge of odonate prey use is based mainly on limited observations of odonates catching or eating their prey. In this study, we examine the potential use of metabarcoding in establishing the diet of three adult odonate species (Lestes sponsa, Enallagma cyathigerum, and Sympetrum danae) at a site in southwestern Finland. To this purpose, we compared three different methods for extracting DNA from fecal samples: the Macherey-Nagel Nucleospin XS kit, a traditional salt extraction, and the Zymo Research Fecal Microprep kit. From these extracts, we amplified group-specific mitochondrial markers (COI and 16S rRNA) from altogether 72 odonate individuals, and compared them to comprehensive reference libraries. The three odonate species show major overlap in diet, with no significant differences between individuals of different size and/or gender, reflecting opportunistic foraging of adult odonates. Of a total of 41 different prey species detected, the most frequently consumed ones were Diptera, with additional records of six other orders. Based on our data, the best DNA extraction method is the traditional salt extraction, as it provides the most information on prey content while also being the most economical. To our knowledge, this is the first study to resolve the species-level diet of adult odonates. Armed with the appropriate methodological caveats, we are ready to examine the ecological role of odonates in both terrestrial and aquatic food webs, and in transferring subsidies between these two realms

    Next Generation Sequencing of Fecal DNA Reveals the Dietary Diversity of the Widespread Insectivorous Predator Daubenton's Bat (Myotis daubentonii) in Southwestern Finland

    Get PDF
    Understanding predator-prey dynamics is a fundamental task in the evaluation of the adaptive capacities of species. However, direct observations or morphological identification of fecal remains do not offer an effective way to study the dietary ecology of elusive species, such as nocturnal insectivorous bats. However, recent advances in molecular techniques have opened a new method for identifying prey species from fecal samples. In this study, we amplified species-specific mitochondrial COI fragments from fecal DNA extractions from 34 individual Daubenton's bats (Myotis daubentonii) collected between 2008 and 2010 from southwestern Finland. Altogether, 128 different species of prey were identified based on a comprehensive local DNA reference library. In our study area, Daubenton's bats feed most frequently on insects of the orders Diptera (found in the diet of 94% individuals), Trichoptera (69%) and Lepidoptera (63%). The most frequent dipteran family in the diet was Chironomidae, which was found in 31 of 34 individuals. Most common prey species were chironomids Microtendipes pedellus (found in 50% of bats), Glyptotendipes cauliginellus (44%), and Procladius ferrugineus (41%). For the first time, an accurate species level list of the diet of the insectivorous Daubenton's bat (Myotis daubentonii) in Finland is presented. We report a generally applicable method for describing the arthropod diet of vertebrate predators. We compare public databases to a national database to highlight the importance of a local reference database

    Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?

    Get PDF
    Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi-quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa-specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low-level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population-level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research

    Enhanced threat of tick-borne infections within cities? Assessing public health risks due to ticks in urban green spaces in Helsinki, Finland

    Get PDF
    Most tick-related studies in Europe have been conducted in nonurban areas, but ticks and tick-borne pathogens also occur in urban green spaces. From a public health perspective, risks regarding tick-borne infections should be studied in these urban areas, where contacts between infected ticks and humans may be more frequent than elsewhere, due to high human activity. We examined the risk of encountering an infected tick in urban green spaces in Helsinki, Finland. We collected ticks at nine sites throughout Helsinki, recorded the prevalence of several pathogens and identified areas with a high potential for contacts between infected ticks and humans. Moreover, we explored the relationship between the density ofBorrelia burgdorferisensu lato-infected ticks and locally diagnosed cases of borreliosis and compared the potential for human-tick encounters in Helsinki to those in nonurban areas in south-western Finland. During 34.8 km of cloth dragging, 2,417Ixodes ricinuswere caught (402 adults, 1,399 nymphs and 616 larvae). From analysed nymphs, we found 11 distinct tick-borne pathogens, with 31.5% of nymphs carrying at least one pathogen. Tick activity was highest in August and September, leading to the density of nymphs infected withB. burgdorferis.l., and concurrently infection risk, to also be highest during this time. Nymph densities varied between the sampling sites, with obvious implications to spatial variation in infection risk. While ticks and tick-borne pathogens were found in both Helsinki and nonurban areas in south-western Finland, the estimates of human activity were generally higher in urban green spaces, leading to a higher potential for human-tick contacts therein. The presence of ticks and tick-borne pathogens and high local human activity in urban green spaces suggest that they form potential foci regarding the acquisition of tick-borne infections. Risk areas within cities should be identified and knowledge regarding urban ticks increased

    Bats and Wind Farms: The Role and Importance of the Baltic Sea Countries in the European Context of Power Transition and Biodiversity Conservation

    Get PDF
    Although labeled as environmentally friendly, wind power can have negative impacts on the environment, such as habitat destruction or wildlife fatalities. Considering the distribution and migratory characteristics of European bats, the negative effects of wind power should be addressed on an appropriate scale. This review summarizes the current state of knowledge on interactions between wind farms and bats in Europe, and compares it with the situation in the countries of the European boreal biogeographic region. We analyzed data from papers published in international and national scientific journals, focusing on studies conducted in Europe. The issue of the impacts wind power has on bats is clearly overlooked in most of the countries of the European boreal region, with low volumes of research available on the topic. This is probably due to fewer wind farms in the area, making this recent issue a less-prioritized topic. However, the Baltic Sea, and the countries surrounding it, are of extreme importance with regards to bat migration, especially for the Pipistrellus nathusii. Therefore, more research on wind power and bats is needed in this region, as well as more cooperation between all the stakeholders

    Parachlamydia acanthamoebae Detected during a Pneumonia Outbreak in Southeastern Finland, in 2017-2018

    Get PDF
    Community-acquired pneumonia (CAP) is a common disease responsible for significant morbidity and mortality. However, the definite etiology of CAP often remains unresolved, suggesting that unknown agents of pneumonia remain to be identified. The recently discovered members of the order Chlamydiales, Chlamydia-related bacteria (CRB), are considered as possible emerging agents of CAP. Parachlamydia acanthamoebae is the most studied candidate. It survives and replicates inside free-living amoeba, which it might potentially use as a vehicle to infect animals and humans. A Mycoplasma pneumoniae outbreak was observed in Kymenlaakso region in Southeastern Finland during August 2017-January 2018. We determined the occurrence of Chlamydiales bacteria and their natural host, free-living amoeba in respiratory specimens collected during this outbreak with molecular methods. Altogether, 22/278 (7.9%) of the samples contained Chlamydiales DNA. By sequence analysis, majority of the CRBs detected were members of the Parachlamydiaceae family. Amoebal DNA was not detected within the sample material. Our study further proposes that Parachlamydiaceae could be a potential agent causing atypical CAP in children and adolescents

    The importance of study duration and spatial scale in pathogen detection - evidence from a tick-infested island

    Get PDF
    Ticks (Acari: Ixodoidea) are among the most common vectors of zoonotic pathogens worldwide. While research on tick-borne pathogens is abundant, few studies have thoroughly investigated small-scale spatial differences in their occurrence. Here, we used long-term cloth-dragging data of Ixodes ricinus and its associated, known and putative pathogens (Borrelia burgdorferi s.l., Borrelia miyamotoi, Anaplasma phagocytophilum, Rickettsia spp., Candidatus Neoehrlichia mikurensis, Bartonella spp., Babesia spp., and tick-borne encephalitis virus, TBEV) from a small, well-studied island in southwestern Finland to analyze potential temporal and spatial differences in pathogen prevalence and diversity between and within different biotopes. We found robust evidence indicating significant dissimilarities in B. burgdorferi s.l., A. phagocytophilum, Rickettsia, and Ca. N. mikurensis prevalence, even between proximal study areas on the island. Moreover, during the 6 years of the ongoing study, we witnessed the possible emergence of TBEV and Ca. N. mikurensis on the island. Finally, the stable occurrence of a protozoan pathogen that has not been previously reported in Finland, Babesia venatorum, was observed on the island. Our study underlines the importance of detailed, long-term tick surveys for public health. We propose that by more precisely identifying different environmental factors associated with the emergence and upkeep of enzootic pathogen populations through rigorous longitudinal surveys, we may be able to create more accurate models for both current and future pathogen distributions
    corecore